

PCR Protocols and Guides

Simplify your gene discovery

PCR Protocols and Guides

Introduction

Merck Millipore strives to provide up-to-date PCR protocols for your greatest experimental challenges. In this guide, we share our collective expertise on technical applications of PCR to help you achieve high fidelity gene amplification using our optimized protocols for minimal sample processing.

This guide includes information on:

- Sample preparation
- Primer design
- PCR reagent set up
- Thermocycling parameters

We've provided detailed guidelines for product usage in technical bulletins available on product-specific pages at www.merck4chemicals.com. Plus, our downloadable inNovations newsletters contain additional articles on specific applications. For more specific answers to your questions, please call our dedicated, experienced technical support staff at +1 800 645 5476.

KOD Hot Start DNA Polymerase, KOD XL DNA Polymerase, KOD Xtreme™ Hot Start DNA Polymerase, NovaTaq™ DNA Polymerase, NovaTaq™ Hot Start DNA Polymerase, One Step RT-PCR Kit

Use of these products is covered by one or more of the following US patents and corresponding patent claims outside the US: 5,789,224; 5,618,711; 6,127,155 and claims outside the US corresponding to expired US Patent 5,079,352. The purchase of this product includes a limited, non-transferable immunity from suit under the foregoing patent claims for using only this amount of product for the purchaser's own internal research. No right under any other patent claim, no right to perform any patented method, and no right to perform commercial services of any kind, including without limitation reporting the results of purchaser's activities for a fee or other commercial consideration, is conveyed expressly, by implication, or by estoppel. This product is for research use only. Diagnostic uses under Roche patents require a separate license from Roche. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Centre Drive, Foster City, California, 94404, USA. KOD DNA Polymerases are manufactured by Toyobo and distributed by EMD Millipore Corp. KOD XL DNA Polymerase is licensed under US Patent No. 5,436,149 owned by Takara Shuzo, Co., Ltd.

Table of Contents

Browse content by application

PCR APPLICATION	PROTOCOL	SAMPLE DATA
General Hot Start PCR for:		
Genomic DNA	16	17
Plasmid DNA	22	22
cDNA	18	19
Crude Samples	5	7-13
Whole blood	7	7
Dried blood on filter paper		
Cultured cell	26	
Yeast (colony)	14	14
Bacteria (colony)	44	45
Fungus (colony)		
Mouse tail	9	9-10
Plant (leaf, rice grain, etc)	12	12
Mouse toe	11	11
Formalin-fixed, paraffin-embedded tissue	13	13
Long DNA targets (1.3 kb to 8.5 kb)	15	17
Long DNA targets (17.4 kb to 24 kb)	15	17
GC-rich DNA targets		
One Step RT-PCR	26	41-43

Browse content by product

- 01. User Protocol Technical Bulletins and inNovation listings
- 02. KOD Xtreme™ Hot Start DNA Polymerase
- 03. KOD Hot Start DNA Polymerase
- 04. KOD XL DNA Polymerase
- 05. KOD DNA Polymerase
- 06. One Step RT-PCR Master Mix
- 07. NovaTaq™ Hot Start DNA Polymerases
- 08. NovaTaq™ Hot Start Master Mix
- 09. NovaTaq™ DNA Polymerases
- 10. FAQs
- 11. Technical Notes
- 12. Troubleshooting Guides
- 13. Citations

O1. User Protocol Technical Bulletins and inNovation listings

Product-specific user protocol bulletins and inNovations newsletters found on *merck4chemicals.com*

Product	Detailed Kit Protocols (Bulletins)	inNovations Issue Number
KOD DNA Polymerase	TB320	25
KOD Hot Start DNA Polymerase	TB340	17, 21 and 25
KOD Hot Start Master Mix	TB506	
KOD XL DNA Polymerase	TB342	17
KOD Xtreme™ Hot Start DNA Polymerase	TB507	28
One Step RT-PCR Master Mix	TB508	
NovaTaq™ Hot Start DNA Polymerase and Master Mix Kit	TB460	
NovaTaq™ DNA Polymerase	TB322	

O2. KOD Xtreme[™] Hot Start DNA Polymerase

KOD Xtreme™ Hot Start DNA Polymerase Allows Amplification from Challenging Crude Samples with Minimal Processing

Currently, typical PCR systems require extraction and purification of nucleic acid targets from samples of interest. In addition to the burden of time and cost, this sample preparation can be restricted due to low availability of initial sample specimens. The KOD Xtreme™ Hot Start DNA Polymerase system's unique formulation enables you to amplify directly from minimally processed samples; allowing highly efficient crude sample PCR target amplification. KOD Xtreme™ system is based on the ultra high fidelity, fast extension rates and processivity of DNA polymerase from *Thermococcus kodakaraensis* (KOD). Collectively, the KOD Xtreme™ system provides best in class amplification for a wide array of crude lysates (shown below) and targets up to 90% GC rich sequences resistant to PCR amplification due to hairpin secondary structures. Hairpin or stem loop type sequences often lead to truncated products or high non-specificity with other polymerases (Viswanthan 1999). In addition, with its ability to amplify long PCR targets (tens of kilobases), the KOD Xtreme™ system extends the limits of typical PCR reactions with other enzymes (shown below).

Minimal processing of typical PCR samples using KOD Xtreme™ Hot Start DNA Polymerase

Sample Preparation	Sample Type
Not required	Whole blood
Not required	Dried blood on filter paper
Not required	Cultured cells
Not required	Yeast (colony)
Not required	Bacteria (colony)
Not required	Fungus (colony)
Not required	Sperm
Not required	Plankton
Short Lysis (10 min)	Mouse tail
Short Lysis (10 min)	Plant (leaf, rice grain, etc)
Short Lysis (10 min)	Hair root

Standard Reaction Conditions

Component	Volume
PCR grade water	X μL
2x KOD Xtreme™ PCR Buffer	25 μL
2 mM dNTPs*	10 μL
10 pmol/μL Primer F	1.5 μL
10 pmol/μL Primer R	1.5 μL
KOD Xtreme™ Hot Start DNA Polymerase (1.0 U/µL)	1.0 μL
Genomic DNA (approx 20 ng/μL)	~200 ng
Plasmid DNA	~50 ng
cDNA	~200 ng (or RNA)
Crude Samples	2.0 μL
Total Volume	50 μL

Thermocycling Recommendations

A. Standard KOD Xtreme™ DNA Polymerase two-step thermocycling

Two-step Cycling (Recommended for most Applications)	
1. Polymerase Activation	94 °C for 2 min
2. Denaturation	98 °C for 10 s
3. Annealing and Extension	68 °C for 1 min

Repeat steps 2 and 3 for 20-35 Cycles

B. Three-step cycling recommended for low melting point (T_m) primers

1. Polymerase Activation	94 °C for 2 min	
2. Denaturation	98 °C for 10 s	
3. Annealing	T _m minus 5 °C, for 30 s	
4. Extension	68 °C for 1 min/kb	

Repeat steps 2-4 for 20-35 cycles

C. Step-down cycling recommended for long and difficult targets

94 °C for 2 minutes	1 cycle	
98 °C for 10 s	5 cycles	
74 °C for 1 min/kb		
98 °C for 10 s	E avalag	
72 °C for 1 min/kb	5 cycles	
98 °C for 10 s	Facilia	
70 °C for 1 min/kb	5 cycles	
98 °C for 10 s	15-25 cycles	
68 °C for 1 min/kb		
68 °C for 7 min	1 cycle	

Principles of Primer Design

- 22-35 bases with a melting temperature (T_m) over 60 °C
- For long amplification of a long target; 22–35 bases with high T_m values (up to 65 °C)
- For two-step or step-down cycling primer T_m value should be >73 $^{\circ}$ C
- $\bullet~$ If the $\rm T_{\rm m}~$ value of the primer is under 73 °C, the three-step cycle is recommended
- T_m should be calculated using Nearest Neighbor Method
- For amplification of longer targets (≥10 kb), primer oligonucleotides should be cartridge- or HPLC- purified.

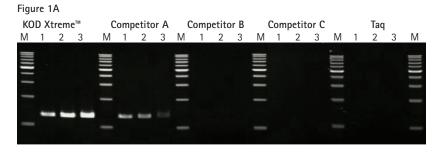
 Primers purified by gel filtration tend to result in smeared PCR products.

Specific Application Protocols with KOD Xtreme™ Hot Start DNA Polymerase

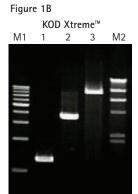
Fast Amplification from Whole Blood Samples

STEP 1. Typical reaction setup.

Take 1-4 μL of untreated whole blood and add to 50 μL of reaction setup as below:


Component	Volume	Final Concentration
2x Xtreme™ Buffer	25 μL	1x
dNTPs (2 mM each)	 10 μL	0.4 mM
PCR Grade Water	X μL	
Sense (5') Primer (10 μM)		0.3 μΜ
Antisense (3') Primer (10 μM)	1.5 µL	0.3 μΜ
Whole Blood	 1-4 μL	
KOD Xtreme™ Hot Start DNA Polymerase (1.0 U/μL)	1.0 µL	
Total Volume	 50 μL	

STEP 2. Example Thermocycling Conditions


Two-step Cycling*	
1. Polymerase Activation	94 °C for 2 min
2. Denaturation	98 °C for 10 s
3. Annealing and Extension	68 °C for 1 min

Perform steps 2-3 for 30 cycles

- * Standard tree-step cycling may also be used
- 1. Polymerase activation and denaturation as above, followed by annealing [Lowest Primer T_m °C for 30 s] followed by extension [68 °C for 1 min/kb]; 20-40 cycles

A. Reactions (50 μL each) were set up to amplify a 1.3 kb region of the β -globin gene from 1, 2 or 4 μL of untreated whole blood (lanes numbered 1, 2, and 3, respectively). B. PCR reactions were set up to amplify a 1.3 kb region, a 3.6 kb region, or an 8.5 kb region of the β -globin gene (lanes 1, 2, and 3, respectively) from 2 μL of untreated whole blood. For both A and B, PCR cycling parameters for KOD Xtreme[™] were as follows: initial denaturation at 94 °C for 2 min; 30 cycles at 98 °C for 10 s, 68 °C for 1 min/kb. For polymerases from other manufacturers, optimal cycling parameters as recommended by each manufacturer were used. M and M1: 1 kb Ladder; M2: λ /Hind III Marker.

Example Data:

KOD-Xtreme™ Hot Start DNA Polymerase amplification of β-globin gene fragments from untreated Whole Blood Samples as compared with other DNA polymerases

Primer sequences used in this experiment:

<β-globin 1.3 kb>

Primer F: 5'-TTAGGCCTTAGCGGGCTTAGAC-3'
Primer R: 5'-CCAGGATTTTTGATGGGACACG-3'

 $<\beta$ -globin 3.6 kb>

Primer F: 5'-GGTGTTCCCTTGATGTAGCACA-3'
Primer R: 5'-ACATGTATTTGCATGGAAAACAACTC-3'

 $<\!\!\beta\!\!$ -globin 8.5 kb>

Primer F: 5'-TGATAGGCACTGACTCTCTGTCCCTTGGGCTGTTT-3'
Primer R: 5'-ACATGATTAGCAAAAGGGCCTAGCTTGGACTCAGA-3

PCR from Dried Mouse Blood Filter Paper

STEP 1. Blot drop of blood onto filter paper following mouse-tail venous puncture

STEP 2. Set up PCR reaction conditions as below for each blood sample

Component	Volume	Final Concentration
2x Xtreme™ Buffer	25 μL	1x
dNTPs (2 mM each)	10 μL	0.4 mM
PCR Grade Water	X μL	
Sense (5') Primer (10 μM)	1.5 μL	0.3 μΜ
Antisense (3') Primer (10 μM)	1.5 μL	0.3 μΜ
KOD Xtreme™ Hot Start DNA Polymerase (1.0 U/μL)	1.0 μL	
Total Volume	50 μL	

STEP 3. Place filter paper directly into PCR reaction (50 μ L)

STEP 4. Example Thermocycling Conditions

Two-step Cycling	
1. Polymerase Activation	94 °C for 2 min
2. Denaturation	98 °C for 10 s
3. Annealing and Extension	68 °C for 1 min/kb

Repeat step 2-3 for 20-35 cycles

Amplification from Mouse Tail Using Rapid Crude Lysate Preparation with Alkaline Lysis Method; Optimized Protocol for Microtube or 96-well Plate Format

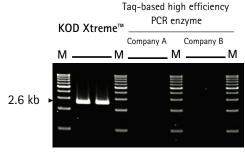
- STEP 1. Cut ~3 mm piece of mouse tail
- STEP 2. Transfer to microfuge tube (or 96-well plate) containing 180 µL of 50 mM NaOH and vortex well
- STEP 3. Incubate at 95 °C for 10 min on a thermocycler
- STEP 4. Add 20 µL of 1 M Tris-HCl (pH 8.0) and vortex well (take care to avoid contamination)
- STEP 5. Centrifuge lysate at 12,000 RPM for 5 mins
- STEP 6. Add 0.5-2 µL of lysate to PCR reaction (50 µL) as below

Component	Volume	Final Concentration
2x Xtreme™ Buffer	25 μL	1x
dNTPs (2 mM each)	10 μL	0.4 mM
PCR Grade Water	ΧμL	
Sense (5') Primer -10 μM (10 pmol/ μL)	1.5 μL	0.3 μΜ
Antisense (3') Primer-10 μM (10 pmol/μL)	1.5 μL	0.3 μΜ
KOD Xtreme™ Hot Start DNA Polymerase (1.0 U/μL)	1.0 μL	
Total Volume	50 μL	

STEP 7. Example Thermocycling Conditions

Two-step Cycling	
1. Polymerase Activation	94 °C for 2 min
2. Denaturation	98 °C for 10 s
3. Annealing and Extension	68 °C for 1 min/kb

Repeat step 2-3 for 30 cycles

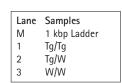

Primer sequences used in this experiment:

Primer F:5'-CCACAGAATCCAAGTCGGAACTCTTG-3' Primer R:5'-GTAGCAGTGGTGGTATTATACATGGTG-3'

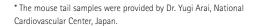
Thermocycling was performed at

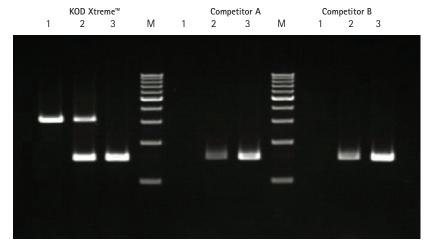
1. 94 °C for 2 minutes	
2. 98 °C for 10 s	30 cycles
3. 368 °C for 2.5 mins	-

 $0.5~\mu L$ of mouse tail lysate was added to $50~\mu L$ PCR reaction


M: 1 kb Ladder Marker

Example Data 1:


Amplification of mouse membrane glycoprotein (Thy-1) gene from mouse tail lysates prepared using alkaline lysis


Example Data 2:

Genotyping of transgenic mice using KOD Xtreme™ Hot Start DNA Polymerase using mouse tail tissue lysates

Reactions (50 µL each) were set up to amplify a 1.5 kb region or a 3.1 kb region of the wild-type or transgenic gene, respectively, from the indicated mouse tail tissue lysates*. Tissue fragments (~ 3 mm- each tail piece) were extracted in 50 mM NaOH for 10 minutes at 95 °C, neutralized with one-tenth volume of 1 M Tris-HCl, pH 8.0, spun at 12,000 rpm for 5 min, and 1 µL of each of the clarified extracts was used in the corresponding amplification reaction. PCR cycling parameters for KOD Xtreme™ were as follows: initial denaturation at 94 °C for 2 min; 30 cycles at 98 °C for 10 s, 68 °C for 3 min. For polymerases from other manufacturers, optimal cycling parameters as recommended by each manufacturer were used. Tg: transgenic; W: wild-type.

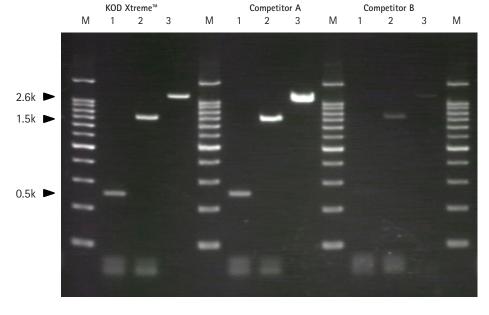
Primer sequences used in this experiment:

Primer F: 5'-TGGACGTGAGCTTCAGCAC-3' Primer R: 5'-AGGCCTGACAGTAGCTCAG-3'

Direct KOD Xtreme™ Hot Start DNA Polymerase PCR Using Mouse Toe

Procedure recommended for younger animals (7-10 days old)

STEP 1. Clip small piece of mouse toe using dissection scissors (use appropriate institutional anesthesia procedures).


STEP 2. Add piece of mouse toe directly into 50 µL of PCR reaction as below:

Component	Volume	Final Concentration
2x Xtreme™ Buffer	25 μL	1x
dNTPs (2 mM each)	10 μL	0.4 mM
PCR Grade Water	11 μL	
Sense (5') Primer-10 μM (10 pmol/μL)	1.5 μL	0.3 μΜ
Antisense (3') Primer-10 μM (10 pmol/μL)	1.5 μL	0.3 μΜ
KOD Xtreme™ Hot Start DNA Polymerase (1.0 U/μL)	1.0 μL	
Total Volume	50 μL	

STEP 3. Example Thermocycling Conditions:

Two-step Cycling	
1. Polymerase Activation	94 °C for 2 min
2. Denaturation	98 °C for 10 s
3. Annealing and Extension	68 °C for 1 min/kb

Repeat step 2-3 for 35 cycles

Example Data:

KOD Xtreme™ Hot Start DNA Polymerase Amplification of 3 genes using direct PCR method from mouse toe tissue using above protocol.

Lane	Samples
------	---------

- M 200 bp DNA ladder
- 1 Mouse TATA box binding protein (TBP) 0.5 kb
- 2 Mouse transferrin receptor (Tfr) 1.5 kb
- 3 Mouse membrane glycoprotein (Thy-1) 2.6 kb

Primer sequences used in this experiment:

Mouse TBP F: CAGTTGCTACTGCCTGCTGTTGTT
Mouse TBP R: GCTAGGATTAAAGACGTGCCACCA
Mouse Tfrc F: TGTGGAGGGTCAACGTGGTAGTT
Mouse Tfrc R: GTGACATTCTCAGGTGGCAGCTT
Mouse Thy-1 F02: CCACAGAATCCAAGTCGGAACTCTG
Mouse Thy-1 R05: GTAGCAGTGGTGGTATTATACATGGTG

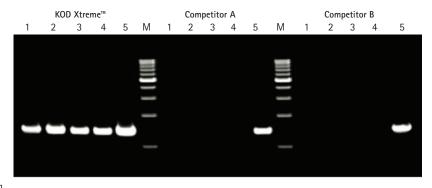
KOD Xtreme™ DNA Amplification of Plant Tissue Lysates

Extract using One Step (below) or homogenization method

- STEP 1. Cut 3 x 3 mm of leaf tissue or ~1 grain of rice and transfer to microfuge tube.
- STEP 2. Add 100 µL of Buffer A (100 mM Tris-HCL [pH 9.5], 1 M KCL and 10 mM EDTA)
- STEP 3. Incubate at 95 °C for 10 min and vortex well
- STEP 4. Add 1 µL of each extract to 50 µL PCR reaction

Reaction Set Up

Component	Volume	Final Concentration
2x Xtreme™ Buffer	25 μL	1x
dNTPs (2 mM each)	10 μL	0.4 mM
PCR Grade Water	10 μL	
Sense (5') Primer -10 μM (10 pmol/μL)	1.5 μL	0.3 μΜ
Antisense (3') Primer-10 μM (10 pmol/μL)	1.5 μL	0.3 μΜ
KOD Xtreme™ Hot Start DNA Polymerase (1.0 U/μL)	1.0 μL	
Plant/Grain tissue supernatant	1.0 µL	
Total Volume	50 μL	


STEP 5. Example Thermocycling as follows:

Two-step Cycling	
1. Polymerase Activation	94 °C for 2 min
2. Denaturation	98 °C for 10 s
3. Annealing and Extension	68 °C for 1 min/kb

Repeat steps 2 and 3 for 30 cycles

Example Data:

Performance of KOD Xtreme™ Hot Start DNA Polymerase System in Crude Lysates of different Plant Tissues

Lane Samples
M 1 kb Ladder
1 Tomato leaf
2 Tobacco leaf
3 Rice leaf
4 Rice grain
5 Purified rice leaf DNA

Reactions (50 μ L each) were set up to amplify a 1.3 kb region of the rbcL gene from each of the indicated crude plant tissue lysates. All tissues ($\sim 3 \times 3$ mm piece of leaf or one rice grain) were extracted for 10 minutes at 95 °C in 100 mM Tris-HCl (pH 9.5), 1 M KCl, 10 mM EDTA, and 1 ul of each of the extracts was used in the corresponding amplification reaction. PCR cycling parameters for KOD Xtreme[™] were as follows: initial denaturation at 94 °C for 2 min; 30 cycles at 98 °C for 10 s, 68 °C for 1.5 min. For other polymerases, optimal cycling parameters as recommended by respective manufacturers were used.

Primer sequences used in this experiment:

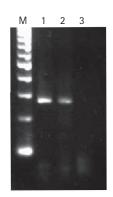
F1: 5'-ATGTCACCACAAACAGAGACTAAAGC-3' (Tomato & Tobacco) R1: 5'-AAGCAGCAGCTAGTTCCGGGCTCCA-3' (Tomato & Tobacco)

F2: 5'-ATGTCACCACAAACAGAAACTAAAGC-3' (Rice) R2: 5'-AAGCTGCGGCTAGTTCAGGACTCCA-3' (Rice)

^{*}Step 3 can be replaced by homogenization of the plant tissue in buffer A using a pestle followed by step 4 as above.

PCR Amplification From Formalin-fixed Paraffin-embedded (FFPE) Tissue Specimens Using KOD Xtreme™ Hot Start DNA Polymerase

- STEP 1. Transfer formalin-fixed paraffin-embedded (FFPE) tissue (1 cm x 2 cm x 1 µm) to 1.5 mL microfuge tube
- STEP 2. (De-paraffinization) Fill tube to top with xylene and leave for 5 min; remove xylene and repeat step 3x
- STEP 3. Add 100% ethanol and leave for 5 min remove ethanol and repeat 4x
- STEP 4. Dehydrate tissue at 70 °C for 5 min
- STEP 5. Add 300 μ L of 10 mM Tris-HCI [pH 8.0] and 10 μ L of Proteinase K (10 mg/mL) and incubate at 37 °C overnight
- STEP 6. Heat at 70 °C for 10 min
- STEP 7. Add 1 µL of lysate to 50 µL PCR reaction as below:


Component	Volume	Final Concentration
2x Xtreme™ Buffer	25 μL	1x
dNTPs (2 mM each)	10 μL	0.4 mM
PCR Grade Water	10 μL	
Sense (5') Primer-10 μM (10 pmol/μL)	1.5 μL	0.3 μΜ
Antisense (3') Primer-10 μM (10 pmol/μL)	1.5 µL	0.3 μΜ
KOD Xtreme™ Hot Start DNA Polymerase (1.0 U/μL)	1.0 μL	
Sample lysate	1.0 μL	
Total Volume	50 μL	,

STEP 8. Example Thermocycling

Three-step Cycling	
1. Polymerase Activation	94 °C for 2 min
2. Initial Denaturation	98 °C for 15 min*
3. Denaturation	98 °C for 10 s
4. Annealing	57 °C for 30 s
5. Extension	68 °C for 30 s**

Repeat step 3-5 for 38 cycles

^{**}Extension at 1 min/kb

Example Data:

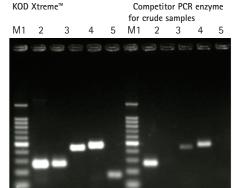
Amplification of $\beta\text{-globin}$ gene (260 bp) from FFPE human tissue

Lane	Samples
M	100 bp DNA ladder
1	Sample 1
2	Sample 2
3	Distilled Water

^{*} Initial Denaturation 7-15 min

Amplification From Complex Microbial Lysates Such as Yeast or Fungi

STEP 1. Pick a piece of small/medium sized colony


STEP 2. Inoculate directly into 50 µL PCR reaction as below:

Component	Volume	Final Concentration
2x Xtreme™ Buffer	25 μL	1x
dNTPs (2 mM each)	10 μL	0.4 mM
PCR Grade Water	11 μL	
Sense (5') Primer –10 μM (10 pmol/μL)		0.3 μΜ
Antisense (3') Primer-10 μM (10 pmol/μL)	1.5 µL	0.3 μΜ
KOD Xtreme™ Hot Start DNA Polymerase (1.0 U/μL)	1.0 μL	
Total Volume	50 μL	<u> </u>

STEP 3. Example Thermocycling as follows:

Three-step Cycling	
1. Polymerase Activation	94 °C for 2 min
2. Denaturation	98 °C for 10 s
3. Annealing	50 °C for 30 s
4. Extension	68 °C for 1 min

Repeat step 2-4 for 30 cycles

Lane Samples M 100 bp DNA ladder 1 Aspergillus oryzae 2 Aspergillus niger 3 Saccharomyces cerevisiae 4 Schizosaccharomyces pombe 5 Pichia pastoris

Primer sequences used in this experiment:

Primer F: GTAACAAGGT(T/C)TCCGT Primer R: CGTTCTTCATCGATC

ITS-1 genes (150-470 bp) were amplified directly from small portions of colonies of fungus and yeast strains. Although fungi and yeasts have thick cell wall structures, KOD Xtreme™ Hot Start DNA polymerase successfully amplified all targets directly from the colonies.

14

Example Data:

Crude Lysates

Performance of KOD Xtreme™

System in Complex Microbial

Hot Start DNA Polymerase

KOD Xtreme™ Hot Start DNA Polymerase Amplification of Long or Difficult DNA Targets

A. DNA amplification of long products from λ DNA.

STEP 1. Add 10 ng of purified λ DNA into 50 μ L PCR reaction as below:

Component	Volume	Final Concentration
2x Xtreme™ Buffer	25 μL	1x
dNTPs (2 mM each)	10 μL	0.4 mM
PCR Grade Water	11 μL	
Sense (5') Primer-10 μM (10 pmol/μL)	 1.5 μL	0.3 μΜ
Antisense (3') Primer-10 μM (10 pmol/μL)	1.5 µL	0.3 μΜ
KOD Xtreme™ Hot Start DNA Polymerase (1.0 U/μL)	 1.0 μL	
λDNA	1.0 μL	10 ng
Total Volume	50 μL	

STEP 2. Perform step-down cycling:

94 °C for 2 minutes	1 cycle	
98 °C for 10 s	F avalage	
74 °C for 1 min/kb	5 cycles	
98 °C for 10 s	5 cycles	
72 °C for 1 min/kb		
98 °C for 10 s	- 5 cycles	
70 °C for 1 min/kb		
98 °C for 10 s	20 cycles	
68 °C for 1 min/kb		
68 °C for 7 min	1 cycle	

PCR cycling conditions

94 °C 2 min

98 °C 10 s, 74 °C 1 min/kb (5 cycles)

98 °C 10 s, 72 °C 1 min/kb (5 cycles)

98 °C 10 s, 70 °C 1 min/kb (5 cycles)

98 °C 10 s, 68 °C 1 min/kb (20 cycles)

Primer sequences used in this experiment:

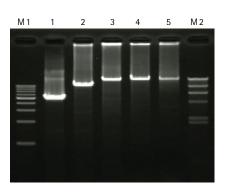
5 kb target

F primer: 5'-CTGATGAGTTCGTGTCCGTACAACTGGCGTAATC-3' R primer: 5'-CGTTTGTACTCCAGCGTCTCATCTTTATGC-3'

10 kb target:

F primer: 5'-CTGATGAGTTCGTGTCCGTACAACTGGCGTAATC-3' R primer: 5'-CATAGTCATCACCAGATTTCAATAACAT-3'

20 kb target:


F primer: 5'-CTGATGAGTTCGTGTCCGTACAACTGGCGTAATC-3' R primer: 5'-GTGCACCATGCAACATGAATAACAGTGGGTTATC-3'

30 kb target:

F primer: 5'-CTGATGAGTTCGTGTCCGTACAACTGGCGTAATC-3' R primer: 5'-GAAAGTTATCGCTAGTCAGTGGCCTGAAGAGACG-3'

40 kb target:

F primer: 5'-CTGATGAGTTCGTGTCCGTACAACTGGCGTAATC-3' R primer: 5'-TAATGCAAACTACGCGCCCTCGTATCACATGG-3'

Example Data:

Long target capability: amplification of products up to 40 kb in length from λ DNA

B. Long target amplification of genomic DNA

STEP 1. Add 200 ng of purified human genomic DNA to 50 μL PCR reaction

Component	Volume	Final Concentration
2x Xtreme™ Buffer	25 μL	1x
dNTPs (2 mM each)	10 μL	0.4 mM
PCR Grade Water	X μL	
Sense (5') Primer -10 μM (10 pmol/μL)	 1.5 μL	0.3 μΜ
Antisense (3') Primer-10 μM (10 pmol/μL)	1.5 µL	0.3 μΜ
KOD Xtreme™ Hot Start DNA Polymerase (1.0 U/μL)	1.0 μL	
Genomic DNA	X μL	200 ng
Total Volume	50 μL	

STEP 2. Perform thermocycling based on target size as below

1.3 kb to 8.5 kb targets

Two-step Cycling	
1. Polymerase Activation	94 °C for 2 min
2. Denaturation	98 °C for 10 s
3. Extension	68 °C for 1 min

Perform steps 2-3 for 30 cycles

17.4 kb to 24 kb targets

94 °C for 2 minutes	1 cycle	
98 °C for 10 s	Facilia	
74 °C for 1 min/kb	5 cycles	
98 °C for 10 s	5 cycles	
72 °C for 1 min/kb		
98 °C for 10 s	- 5 cycles	
70 °C for 1 min/kb		
98 °C for 10 s	20 cycles	
68 °C for 1 min/kb		
68 °C for 7 min	1 cycle	

PCR cycling conditions

1.3 to 8.5 kb targets

94 °C 2 min

98 °C 10 s, 68 °C 1 min/kb (30 cycles)

17.5 to 24 kb targets

94 °C 2 min

98 °C 10 s, 74 °C 1 min/kb (5 cycles)

98 °C 10 s, 72 °C 1 min/kb (5 cycles)

98 °C 10 s, 70 °C 1 min/kb (5 cycles)

98 °C 10s, 68 °C 1 min/kb (20 cycles)

M1 1 2 3 4 5 M2

KOD Xtreme™ Hot Start DNA Polymerase Amplification of up to 24 kb Human Genomic DNA gene targets

Example Data 1:

Amplification of $\beta\text{-globin}$ and TPA genes

Primer sequences used in this experiment:

1.3 kb β-globin target

Forward primer: 5'-TTAGGCCTTAGCGGGCTTAGAC-3' Reverse primer: 5'-CCAGGATTTTGATGGGACACG-3'

3.6 kb β -globin target:

Forward primer: 5'-GGTGTTCCCTTGATGTAGCACA-3'
Reverse primer: 5'-ACATGTATTTGCATGGAAAACAACTC-3'

8.5 kb β -globin target:

Forward primer: 5'-TGATAGGCACTGACTCTGTCCCTTGGGCTGTTT-3'
Reverse primer: 5'-ACATGATTAGCAAAAGGGCCTAGCTTGGACTCAGA-3'

17.5 kb β-globin target:

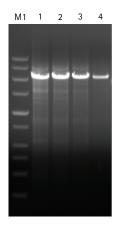
Forward primer: 5'-TGCACCTGCTCTGTGATTATGACTATCCCACAGTC-3' Reverse primer: 5'-ACATGATTAGCAAAAGGGCCTAGCTTGGACTCAGA-3'

24 kb tPA target:

Forward primer: 5'-CCTTCACTGTCTGCCTAACTCCTTCGTGTGTTCC-3' Reverse primer: 5'-TGTCTCCAGCACACACACATGTTGTCGGTGAC-3'

PCR cycling conditions

94 °C 2 min


98 °C 1 s, 68 °C 8.5 min (30 cycles)

4 °C Hold

Each reaction included Human Genomic DNA (Cat. No. 69237–3). Lane 1, 100 ng template; Lane 2, 50 ng template; Lane 3, 25 ng template; Lane 4, 5 ng template; Lane M1, Perfect DNA™ Markers, 0.5–12 kb (Cat. No. 69002–3). Target identity was confirmed by sequencing.

Primer sequences used in this experiment:

Forward primer: 5'-CATTGGAAGAGAGAATGTGAAGCAG-3' Reverse primer: 5'-TCCACACTCATTGCAGACTCAGGTG-3'

Example Data 2:
Amplification of 8.4 kb p53

Amplification of 8.4 kb p53 target from human genomic

C. Long target amplification from human cDNA templates

STEP 1. Add ~200 ng of cDNA (from 50 ng of total human RNA) to 50 μL of PCR reaction:

Component	Volume	Final Concentration
2x Xtreme™ Buffer	25 μL	1x
dNTPs (2 mM each)	10 μL	0.4 mM
PCR Grade Water	X μL	
Sense (5') Primer-10 μM (10 pmol/μL)	1.5 μL	0.3 μΜ
Antisense (3') Primer-10 μM (10 pmol/μL)	1.5 µL	0.3 μΜ
KOD Xtreme™ Hot Start DNA Polymerase (1.0 U/μL)	1.0 μL	
cDNA	XμL	200 ng
Total Volume	50 μL	

STEP 2. Perform thermocycling based on target size:

6.8 kb Target

Two-step Cycling	
1. Polymerase Activation	94 °C for 2 min
2. Denaturation	98 °C for 10 s
3. Extension	68 °C for 7 min

Repeat steps 2 to 3 for 30 cycles

13.5 kb Target

Two-step Cycling	
1. Polymerase Activation	94 °C for 2 min
2. Denaturation	98 °C for 10 s
3. Extension	68 °C for 7 min

Repeat steps 2 to 3 for 35 cycles

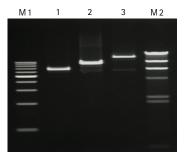
Alternatively, apply step-down cycling:

94 °C for 2 minutes	1 cycle	
98 °C for 10 s	- 5 cycles	
74 °C for 1 min/kb		
98 °C for 10 s	5 cycles	
72 °C for 1 min/kb		
98 °C for 10 s	- 5 cycles	
70 °C for 1 min/kb		
98 °C for 10 s	- 20 cycles	
68 °C for 1 min/kb		

Primer sequences used in this experiment:

6.8 kb DNA polymerase epsilon catalytic subunit target Forward primer: 5'-CACTTCCTCAGTTTCGGCACTCAAGCG-3' Reverse primer: 5'-CTTCTGCAGCAGCCACTCCAGGGTCTC-3'

8.9 kb IGF2 receptor target


Forward primer: 5'-TCCCGCTCCGCTCTCCACCTCCGC-3'
Reverse primer: 5'-CAGGGCGGTTTGCTTCTCAGCAATAGA-3'

13.5 kb dystrophin target

Forward primer:

5'-GCCTACTGGAGCAATAAAGTTTGAAGAACTTTTACCAGG-3' Reverse primer: 5'-CACAACACGAAATAATGTCCAAATTAATTATGC-3'

Each reaction included cDNA derived from 50 ng total human RNA as template. A 5 μ L sample of each 50 μ L reaction was analyzed. Lane M1, 1 kb DNA ladder; Lane 1, 6.8 kb DNA polymerase epsilon catalytic subunit (NM_006231) target, Lane 2, 8.9 kb insulinlike growth factor 2 receptor (NM_000876) target; Lane 3, 13.5 kb dystrophin target; Lane M2, HindIII-digested I DNA markers. Identity of the dystrophin target was confirmed by sequencing.

Example Data:

KOD Xtreme[™] Hot Start DNA Polymerase amplification of long targets (13.5 kb in length) from a human cDNA template.

PCR cycling conditions

6.8 kb DNA polymerase epsilon catalytic subunit target 94 $^{\circ}\text{C}$ 2 min

98 °C 10 s, 68 °C 7 min (30 cycles)

13.5 kb dystrophin target

94 °C 2 min

98 °C 10 s, 68 °C 14 min (35 cycles)

8.9 kb IGFR2 receptor target

94 °C 2 min

98 °C 10 s, 74 °C 9 min (5 cycles)

98 °C 10 s, 72 °C 9 min (5 cycles)

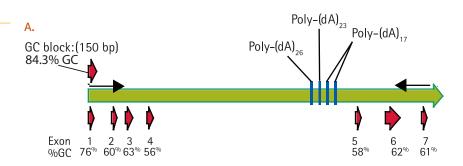
98 °C 10 s, 70 °C 9 min (5 cycles)

98 °C 10 s, 68 °C 9 min (20 cycles)

D. Amplification of GC-rich DNA targets

STEP 1. Add 5 to 100 ng of DNA template to 50 μL PCR reaction as below

STEP 2. PCR Reaction Setup


Component	Volume	Final Concentration
2x Xtreme™ Buffer	25 μL	1x
dNTPs (2 mM each)	10 μL	0.4 mM
PCR Grade Water	X μL	
Sense (5') Primer -10 μM (10 pmol/μL)	1.5 μL	0.3 μΜ
Antisense (3') Primer-10 μM (10 pmol/μL)	1.5 μL	0.3 μΜ
KOD Xtreme™ Hot Start DNA Polymerase (1.0 U/μL)	1.0 μL	
GC-rich DNA template	XμL	5 - 100 ng
Total Volume	50 μL	

STEP 3. Thermocycling Conditions

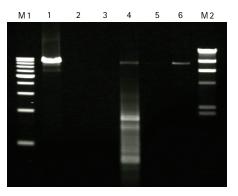
94 °C for 2 minutes	1 cycle	
98 °C for 1 s	Familia	
74 °C for 1 min/kb	- 5 cycles	
98 °C for 1 s	5 cycles	
72 °C for 1 min/kb		
98 °C for 10 s	5 cycles	
70 °C for 1 min/kb		
98 °C for 10 s	15 cycles	
68 °C for 1 min/kb		

Example Data 1: Amplification of 6.9

Amplification of 6.98 kb GC-rich BCL2-associated Protein X (BAX)

The 6977 bp product is 53% GC overall. The first 529 bp are 71.8% GC and contain a segment that is 84.3% GC. The complete GC-rich region schematics and poly-(dA) stretches are shown (Panel A). Each reaction included Human Genomic DNA (Cat No. 69237). A 5 μL sample of each 50 μL reaction was analyzed (Panel A). Lane M1, Perfect DNA Markers, 0.5–12 kb (Cat. No. 69002–3), lanes 1–4 represent 100 ng, 50 ng, 25 ng, and 5 ng template amplification respectively (Panel B). Target identity was verified by sequencing.

Amplification of human IGF2R gene [NM_000876], which contains a 5' region with ~90% GC content. The reactions contained cDNA derived from 50 ng HeLa cell total RNA. Lane M1, 1 kb DNA ladder; Lane 1, using KOD Xtreme™ Hot Start DNA Polymerase; Lane 2, using Polymerase ET from supplier T; Lane 3, using polymerase LT from supplier T; Lane 4, using polymerase PS from supplier T with GC Buffer; Lane 5, using polymerase LT from supplier T with GC Buffer 1; Lane 6, using polymerase LT from supplier T with GC Buffer 2; Lane M2, HindIII-digested λ DNA markers. Data contributed by Akio Sugiyama, Tsuruga Institute of Biotechnology.


Primer sequences used in this experiment:

Forward primer: 5'-TCCCGCTCCGTCTCCACCTCCGC-3'
Reverse primer: 5'-CAGGGCGGTTTGCTTCTCAGCAATAGA-3'

PCR cycling conditions

94 °C 2 min

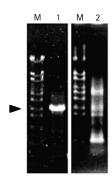
98 °C 10 s, 68 °C 9 min (30 cycles)

Example Data 2:

Amplification of 8.9 kb GC-rich insulin growth factor 2 receptor target: KOD Xtreme™ Hot Start DNA Polymerase versus competitors' polymerases

Primer sequences used in this experiment:

 $T_{m} = 63.6 \, ^{\circ}\text{C}$


Size = 20 mer

Forward primer: 5'-CATTGGAAGAGAGAATGTGAAGCAG-3' Reverse primer: 5'-TCCACACTCATTGCAGACTCAGGTG-3

PCR cycling conditions

For KOD Xtreme™ Hot Start DNA Polymerase, 98 °C 10 s, 68 °C 2 min (35 cycles) For polymerase LT from supplier T 94 °C 1 min, 60 °C 30 s, 72 °C 2 min (35 cycles)

Reactions included 100 ng of a mouse genomic BAC as template. Lane M, EcoT141-digested λ DNA markers; Lane 1, using KOD Xtreme[™] Hot Start DNA Polymerase; Lane 2, using polymerase LT from supplier T. Data provided by Mayu Yasunaga and Kenzo Sato, Tottori University Faculty of Medicine.

Example Data 3:

Amplification of 2 kb GCrich mouse bone morphogenetic protein-2 (BMP-2) target

03. KOD Hot Start DNA Polymerase

STEP 1. Standard Reaction Setup:

Component	Volume	Final Concentration
10x Buffer for KOD Hot Start DNA Polymerase	5 μL	1x
25 mM MgSO4 ^a	3 μL	1.5 mM
dNTPs (2 mM each)	5 μL	0.2 mM
PCR Grade Water	ΧμL	
Sense (5') Primer –10 μM (10 pmol/μL)	1.5 μL	0.3 μΜ
Antisense (3') Primer-10 μM (10 pmol/μL)	1.5 μL	0.3 μΜ
KOD Hot Start DNA Polymerase (1.0 U/μL)	1.0 μL	0.02 U/μL
Template DNA	X μL	
Total Volume	50 μL	

^a To optimize for targets greater than 2 kb, final Mg²⁺ concentration may be adjusted to between 1.5 and 2.25 mM.

STEP 2. Thermocycling Conditions

	Target Size			
Step	<500 bp	500-1000 bp	1000-3000 bp	>3000 bp
1. Polymerase Activation	95 °C for 2 mins	95 °C for 2 mins	95 °C for 2 mins	95 °C for 2 mins
2. Denaturation	95 °C for 20 s	95 °C for 20 s	95 °C for 20 s	95 °C for 20 s
3. Annealing		[Lowest Primer T _m] °C for 10 s		
4. Extension	70 °C for 10 s/kb	70 °C for 15 s/kb	70 °C for 20 s/kb	70 °C for 25 s/kb
Repeat steps 2-4		20-40 cycles		

s/kb = Seconds per kilobase

Example Data 1:

Amplification of 335 bp fragment (CFTR exon 11) from human genomic DNA

1.2 % TAE agarose gel

Lane 1: PCR Markers, 50-2000 bp (Cat. No. 69278-3)

Lane 2: 5 µL PCR reaction

1 μ L of human genomic DNA (100 ng/ μ L) was added to a standard K0D Hot Start 50 μ L PCR reaction. The reaction was incubated as follows: 95 °C for 2 min, then 30 cycles of 95 °C for 20 s, 56 °C for 10 s, and 70 °C for 4 s.

Example Data 2:

Amplification of 919 bp ORF from plasmid DNA

1.4 % TAE agarose gel

ane 1: PCR Markers, 50-2000 bp (Cat. No. 69278-3)

Lane 2: $5 \,\mu L$ PCR Reaction

1 μL of plasmid DNA (10 $ng/\mu L$, diluted in TE) was added to a 50 μL standard KOD Hot Start PCR reaction and subjected to thermocycling as follows: 95 °C for 2 min, then 25 cycles of 95 °C for 20 s, 55 °C for 10 s, and 70 °C for 15 s.

Ultimate Convenience: KOD Hot Start Master Mix

Pre-mixed 2x KOD Hot Start PCR components for convenience and reproducibility especially in higher throughput settings.

STEP 1. Standard Reaction Setup

Component	Vol	ume	Final Concentration
PCR Grade Water	X μL	ΑμΙ	
Sense (5') Primer (10 μM)	1.5 µL	0.6 μL	0.3 μΜ
Antisense (3') Primer (10 μM)	1.5 µL	0.6 μL	0.3 μΜ
Template DNA	YμL	BμL	
KOD Hot Start Master Mix (0.04 U/μL)	25 μL	10 μL	0.02 U/μL
Total Volume	50 μL	20 μL	

STEP 2. Thermocycling Conditions

Target Size

Step	<500 bp	500-1000 bp	1000-3000 bp	>3000 bp
1. Polymerase Activation	95 °C for 2 mins	95 °C for 2 mins	95 °C for 2 mins	95 °C for 2 mins
2. Denaturation	95 °C for 20 s	95 °C for 20 s	95 °C for 20 s	95 °C for 20 s
3. Annealing	[Lowest Primer T _m] °C for 10 s			
4. Extension	70 °C for 10 s/kb	70 °C for 15 s/kb	70 °C for 20 s/kb	70 °C for 25 s/kb
Repeat steps 2-4	20-40 cycles			

s/kb = Seconds per kilobase pair

1.0% TAE agarose gel

Lane 1: PCR Markers, 50-2000 bp (Cat. No. 69278-3)

Lane 2: 5 µL of 50 µL PCR Reaction

Lane 3: 5 µL of 20 µL PCR Reaction

1 μ L of lambda DNA (10 ng/ μ L, diluted in TE) was added to a 50 μ L KOD Hot Start Master Mix reaction and subjected to thermocycling as follows: 95 °C for 2 min, then 25 cycles of 95 °C for 20 s and 70 °C for 9 s.

Example Data:

Amplification of 595 bp fragment (att region) from lambda DNA

04. KOD XL DNA Polymerase

This optimized blend of KOD DNA Polymerase and a mutant form of KOD deficient in 3'-5' exonuclease activity offers reliable amplification of long and complex targets including crude samples. While other KOD formulations offer blunt ended PCR products only, KOD XL polymerase-derived amplicons will include a mixture of blunt and 3'-dA ends. Regarded as best in class for incorporation of deriviatized dNTPs.

STEP 1. Standard Reaction Conditions

Component	Volume	Final Concentration
10x buffer for KOD XL DNA Polymerase	5 μL	1x
dNTPs (2 mM each)	5 μL	0.2 mM (each)
PCR Grade Water	XμL	
Sense (5') Primer (5 pmol/µL)	2 μL	0.2-0.4 μM
Antisense (3') Primer (5 pmol/μL)	2 μL	0.2-0.4 μΜ
Template DNA	Υ μL	
KOD XL DNA Polymerase (2.5 U/μL)	1 μL	0.05 U/μL
Total Volume	50 μL	

STEP 2. Thermocycling Conditions

	Target Size			
Step	<2kb	2-6kb	6-10kb	10-12kb
1. Denaturation	94 °C for 30 s	94 °C for 30 s	94 °C for 30 s	94 °C for 30 s
2. Annealing	Lowest Primer T _m - 5 °C for 5 s			
3. Extension	70-74 °C for 30-60 s/1kb	70-74 °C for 2-6 min	70-74 °C for 5-6 min	70-74 °C for 8 min
Repeat steps 1-3	25-30 cycles			
Final Extension	74 °C – 10 mins			

05. KOD DNA Polymerase

KOD DNA Polymerase is a recombinant high fidelity *Thermococcus kodakaraensis* KOD1 DNA polymerase (Nishioka 2001). Compared to competitor Taq-based or proof-reading polymerases, KOD offers superior extension speeds (2-5x faster respectively), higher processivity qualities and ultra efficient 3-5 exonuclease proofreading activity. Our standard reaction setup will offer accurate, fast and high yielding DNA amplification.

STEP 1. Standard Reaction Conditions

Component	Volume	Final Concentration
10x buffer #1 for KOD DNA Polymerase	5 μL	1x
dNTPs (2 mM each)	5 μL	0.2 mM (each)
MgCl ₂ (10 mM)	5 μL	1 mM
PCR Grade Water	ΧμL	
Sense (5') Primer (5 pmol/µL)	4 μL	0.4 μΜ
Antisense (3') Primer (5 pmol/μL)	4 μL	0.4 μΜ
Template DNA	Υ μL	
KOD DNA Polymerase (2.5 U/μL)	0.4 μL	0.02 U/μL
Total Volume	50 μL	

STEP 2. Thermocycling Conditions

For phage and plasmid DNA templates:

Target Size Step ≤500 bp 1000-3000 bp 3000-5000 bp 5000-6000 bp 1. Denaturation 95 °C for 15 s 95 °C for 15 s 95 °C for 15 s 95 °C for 30 s 2. Annealing 68 °C for 1-30 s (T_m-5) °C for 2 s (T_m-5) °C for 5 s (T_m-5) °C for 30 s 3. Extension 72 °C for 20 s 72 °C for 40 s 72 °C for 60 s nonea Repeat steps 2-3 25 25 25-30 30

For genomic DNA templates: Up to 2 kb

Three Step Cycling	
2. Denaturation	95 °C for 15 s
3. Annealing	(T _m -5) °C for 30 s
4. Extension	72 °C for 30-60 s
Repeat steps 2-4 for 30 cycles	

For cDNA templates: Up to 2 kb

For genomic DNA templates: Up to 2 kb

Three Step Cycling	
2. Denaturation	98 °C for 20 s
3. Annealing	68 °C for 30 s
4. Extension	none ^a
Repeat steps 2-4 for 30 cycles	

 $^{\rm p}$ Primers used for two-step cycling programs must have an appropriate $\rm T_m$ value to anneal at 68 $^{\rm o}$ C.

06. One Step RT-PCR Master Mix Kit

The One Step RT-PCR Master Mix Kit provides a convenient one-enzyme hot start system for reverse transcription (RT) of RNA to cDNA and PCR in a single tube reaction. *Thermophilus thermophilus (rTth)* DNA polymerase acts as both a thermostable RNA-dependent DNA polymerase and a DNA-dependent DNA polymerase.

Gene expression profiling (i.e. mRNA detection) by RT-PCR has become a key step in many cell culture or *in vivo* animal model experiments. The One Step procedure minimizes the risk of RNA degradation and contamination during the RT-PCR process in a single reaction for convenient setup and fast data turnaround. Use the protocols below to achieve simpler end-point PCR analysis from RNA templates with more comparative, reproducible and accurate gene expression studies. In addition, use this kit in quantitative real-time PCR settings (page 41).

STEP 1. Standard Reaction Setup

Reaction Component	Positive Control Reaction	Negative Control Reaction	Sample Reaction
2x One Step RT-PCR Master Mix	25 μL	25 μL	25 μL
50 mM Mn(OA) ₂	2.5 μL	2.5 μL	2.5 μL
Antisense Primer (10 pmol/μL)	2 μL	2 μL	1-3 μL
Sense Primer (10 pmol/µL)	2 μL	2 μL	1-3 μL
RNA (1-1000 ng total RNA)	2 μL (*positive control RNA)	None	X μL (sample RNA)
RNAse-free water	16.5 μL	A μL	YμL
Total Reaction	50 μL	50 μL	50 μL

^{*}The Positive Control RNA is a transcribed product from the human Glyceraldehyde 3-Phosphate Dehydrogenase gene (G3PDH). Using control primers a 450 bp product will be amplified.

STEP 2. Thermocycling Conditions for RT-PCR

Three-step Cycling	
1. Polymerase Activation	90 °C for 30 s
2. Reverse Transcription	60 °C for 30 min
3. Denaturation	94 °C for 1 min
4. Denaturation	94 °C for 30 s
5. Annealing	60 °C for 30 s
6. Extension	72 °C for 1 min
Repeat steps 4-6 for 40 cycles	
7. Final Extension	60 °C for 7 min

Note: Annealing temperature for control primers (Primer F and R) is 60 °C. For other primers, choose T $_{\!m}$ – 5 °C.

STEP 3. Analyze results on 1-2% gel stained with ethidium bromide

(Note: this kit can also be used for real-time quantitative PCR with SYBR® or TaqMan® fluorescent technologies – see pages 41-43.)

O7. NovaTaq[™] Hot Start DNA Polymerase

This heat-activatable, chemically modified form of recombinant *Taq* DNA polymerase is ideal for routine PCR, offering high PCR specificity as well as yield. The NovaTaq[™] Hot Start DNA Polymerase formulation is optimized for low-copy target amplification. Ideal for quantitative and high-throughput PCR applications.

STEP 1. Standard Reaction Setup

Reaction Component	Volume
PCR Grade Water	X μL
dNTP mix (10 mM each)	1 μL
Antisense Primer (5 pmol/µL)	1 μL
Sense Primer (5 pmol/µL)	1 μL
10 x NovaTaq™ Hot Start Buffer	5 μL
MgCl ₂ (25 mM)	3-5 μL
NovaTaq™ Hot Start DNA Polymerase	0.25 μL (1.25 U)
DNA template (typically 10 ng)	1 μL
Total Reaction	50 μL

STEP 2. Thermocycling Conditions for RT-PCR

Three-step Cycling	
1. Polymerase Activation	95 °C for 7- 10 min
2. Denaturation	94 °C for 30 s
3. Annealing	(T _m – 5) °C for 30 s
4. Extension	72 °C for 1 min
Repeat steps 2-4 for 30 cycles	
5. Final Extension	60 °C for 10 min
5. I III al Exterision	00 0101 10 111111

Note: NovaTaq™ Hot Start DNA Polymerase may be used with most PCR cycling programs following polymerase activation step.

08. NovaTaq[™] Hot Start Master Mix

NovaTaq $^{\text{TM}}$ Hot Start Master Mix provides a ready-to-use 2x mixture of NovaTaq $^{\text{TM}}$ Hot Start DNA Polymerase, ultrapure deoxynucleotides, and reaction buffer with MgCl_2 . The Master Mix simplifies the setup for PCR, resulting in time savings, consistency, and minimal risk of contamination.

STEP 1. Reaction Setup

Reaction Component	Volume
NovaTaq™ Hot Start Master Mix	25 μL
Antisense Primer (5 pmol/μL)	1 μL
Sense Primer (5 pmol/μL)	1 μL
DNA template (typically 10 ng)	1 μL
PCR Grade Water	Y μL
Total Reaction	50 μL

Note: The above reaction will contain 1.5 mM final ${\rm MgCl_2}$. For some applications increased ${\rm MgCl_2}$ concentrations may be optimal.

STEP 1A. Additional MgCl₂ Optimization

Final MgCl ₂ Concentration	Volume 25 mM MgCl ₂ to add per 50 μL reaction
1.5 mM	0 μL
2.0 mM	1 μL
2.5 mM	2 μL

STEP 2. Thermocycling Conditions

Three-step Cycling	
1. Polymerase Activation	95 °C for 7- 10 min
2. Denaturation	94 °C for 30 s
3. Annealing	(T _m - 5) °C for 30 s
4. Extension	72 °C for 1 min
Repeat steps 2-4 for 30 cycles	
5. Final Extension	60 °C for 10 min

Note: NovaTaq™ Hot Start DNA Master mix is a robust system applicable with most PCR cycling programs following polymerase activation step.

09. NovaTaq[™] DNA Polymerases

NovaTaq[™] DNA Polymerase is a premium quality recombinant form of *Thermus aquaticus* DNA polymerase. This thermostable enzyme is suitable for a wide range of routine and sensitive PCR applications.

STEP 1. Reaction Setup

Reaction Component	Volume		
PCR Grade Water	40.75 μL		
dNTP mix (10 mM each)	1 μL		
Antisense Primer (5 pmol/μL)	1 μL		
Sense Primer (5 pmol/µL)	1 μL		
10 x NovaTaq™ Buffer (with MgCl ₂)	5 μL		
NovaTaq™ DNA Polymerase	0.25 μL (1.25 U)		
DNA template (typically 10 ng)	1 μL		
Total Reaction	50 μL		

Note: If using NovaTaq $^{\rm M}$ Buffer without MgCl $_2$ add 25 mM MgCl $_2$ to a final concentration of 1.5-2.5 mM and decrease volume of water to compensate

STEP 2. Thermocycling Conditions

Three-step Cycling	
1. Denaturation	94 °C for 1 min
2. Annealing	(T _m – 5) °C for 1 min
3. Extension	72 °C for 2 min
Repeat steps 1-3 for 30 cycles	
4. Final Extension	72 °C for 5 min

10. FAQs

What is the difference between NovaTaq[™] and KOD polymerases?

NovaTaq™ DNA Polymerase is a premium quality recombinant form of *Thermus aquaticus* DNA polymerase. The enzyme possesses 5′ to 3′ DNA polymerase activity and lacks 3′ to 5′ exonuclease activity (proofreading). The preparation is >95% pure and lacks RNase and endonuclease activities. NovaTaq™ DNA Polymerase generates PCR products with 3′- dA overhangs.

KOD is a recombinant form of *Thermococcus kodakaraensis* KOD1 DNA Polymerase. The enzyme's 3′ to 5′ exonuclease-dependent proofreading activity results in an extremely low mutation frequency. The extension speed of KOD is 2x faster than Tag, enabling shorter reaction times. KOD DNA polymerase produces blunt-ended DNA products.

Why should I use KOD DNA polymerases?

KOD DNA Polymerase is an ultra high fidelity thermostable DNA polymerase and a number of independent studies have verified the the extreme high fidelity of KOD DNA Polymerase compared to other thermophilic polymerases (Takagi 1997, Nishioka 2001, Rual 2004, Wu 2006). In addition to a low mutation frequency, the fast extension rate and high processivity of KOD result in higher yields of full-length product in fewer reaction cycles. Combined, these make KOD DNA polymerases the PCR enzyme of choice when speed and fidelity matter.

Nishioka, M. et al. 2001. J. Biotech. 88, 141.

Rual, J-F. et al. 2004. Genome Res. 14, 2128.

Takagi, M. et al. 997 Appl. Environ. Microbiol. 63, 4509.

Wu, G. et al. 2006. J. Biotechnol. 124, 496.

Are Merck Millipore's Novagen® polymerases "proofreading"? What type of proofreading mechanism do NovaTag™ and KOD polymerases use?

KOD, KOD Hot Start, and KOD Xtreme[™] polymerases all possess 3′ to 5′ exonuclease proofreading activity, making them ideal for applications where fidelity is essential, such as PCR from reverse transcription reactions and cloning. KOD XL polymerase is a mixture of traditional KOD and its exonuclease-deficient mutant. NovaTaq[™] polymerase does not have proofreading activity.

- A. KOD 3' to 5' exonuclease proofreading activity
- B. KOD Hot Start 3' to 5' exonuclease proofreading activity
- C. KOD XL mixture of KOD (with exonuclease proofreading activity) and its exonuclease-deficient mutant.
- D. KOD Xtreme™ 3' to 5' exonuclease proofreading activity
- E. NovaTaq[™] lacks 3′ to 5′ exonuclease proofreading activity
- F. NovaTag[™] Hot Start lacks 3' to 5' exonuclease proofreading activity

What types of ends do the various Merck Millipore Novagen® polymerases leave on PCR amplification products?

Generally, proofreading polymerases that possess 3' to 5' exonuclease activity will remove the 3'-dA overhangs whereas non-proofreading polymerases will not.

- A. KOD blunt ends
- B. KOD Hot Start blunt ends
- C. KOD XL mixture of blunt ends and 3'-dA overhangs
- D. KOD Xtreme™ blunt ends
- E. NovaTag[™] 3´-dA overhangs
- F. NovaTaq™ Hot Start 3′-dA overhangs

What does "hot start" mean and what are the advantages?

While it is most convenient to set up PCR reactions at ambient temperature, this can lead to mispriming events that result in non-specific amplification products. In addition, the exonuclease activity possessed by proofreading enzymes, such as KOD, can lead to primer degradation. "Hot start" means that the polymerase is not active until cycling temperatures are increased to activate the polymerase. This eliminates the mispriming and primer degradation concerns described above, resulting in greater specificity and increased target yield. In addition, "hot start" enzymes offer convenience of the room temperature reaction setup.

How does the hot start work with Merck Millipore's Novagen® polymerases?

KOD Hot Start polymerase is a premixed complex of KOD DNA Polymerase and two monoclonal antibodies. The antibodies inhibit the 3′ to 5′ exonuclease and DNA polymerase activities at ambient temperatures, providing high template specificity by preventing primer degradation and mispriming during reaction setup.

NovaTaq[™] Hot Start Polymerase is a chemically modified form of Taq DNA Polymerase that is inactive at room temperature. The enzyme must be activated by heat treatment (10 minutes at 95°C), after which thermocycling can proceed.

What is the difference between KOD XL and KOD Xtreme™ Hot Start DNA Polymerases?

KOD XL polymerase is designed for accurate and rapid amplification of complex, GC-rich, and long (up to 30 kb) target DNA. KOD XL polymerase is an optimized mixture of KOD DNA Polymerase and a mutant form of KOD that is deficient in 3′ to 5′ exonuclease activity, resulting in increased efficiency and better yield of long targets. KOD XL polymerase is the only variation of KOD polymerase known to work in reactions for incorporation of modified dNTPs.

KOD Xtreme™ Hot Start polymerase is an optimized PCR system for the amplification of long or GC-rich DNA templates. The system includes an ultra high fidelity KOD DNA Polymerase complexed with two monoclonal antibodies to permit hot start thermocycling, along with specially formulated 2X Xtreme™ buffer. KOD Xtreme™ polymerase quickly and accurately amplifies genomic and phage/plasmid DNA targets up to 24 and 40 kbp, respectively. KOD Xtreme™ polymerase successfully amplifies challenging DNA templates with up to 90% GC content. Relative fidelity is higher than that of KOD XL polymerase.

Can I use KOD DNA polymerases for site-directed mutagenesis?

KOD DNA polymerases are an ideal choice for site-directed mutagenesis protocols. These polymerases possess ultrahigh fidelity, providing a reduced chance of unintentional changes. This high fidelity combined with high processivity and fast extension rate, allow for efficient amplification of plasmids over 10 kb with only the desired mutation. Below are selected citations of KOD Hot Start polymerase used for site-directed mutagenesis.

Deigendesch, N. et al. 2006 *Nucleic Acids Res.* 34, 5007 Konno, A. et al. 2007 *Mol. Biol. Evol.* 24, 2504. Liang, J. et al. 2007 *Nucleic Acids Res.* 35, 2944.

Are there any special recommendations for using KOD with GC-rich targets?

KOD Xtreme™ Hot Start DNA Polymerases has been specifically formulated for difficult targets, including GC-rich targets. Additions, such as DMSO or other additives, are generally not needed. With other KOD polymerases, the addition of DMSO to 2-10% final concentration may decrease template secondary structure and increase yield. Final DMSO concentrations of less than 5% v/v have no effect on fidelity. The effect of DMSO above 5% v/v on enzyme fidelity has not yet been determined.

Are there any special recommendations for using KOD with long targets?

In addition to trying one of our polymerases specialized for long targets (KOD XL or KOD XtremeTM polymerases), it is often beneficial to adjust the final Mg^{2+} concentration. Adjusting the final $MgSO_4$ concentration from 1.5 to 2.25 mM in 0.25 mM increments should be tried when suboptimal results are obtained for targets over 3000 bp. Also, the addition of DMSO to 2-10% v/v final concentration may reduce secondary structure of the template DNA and increase yield. The 2X XtremeTM Buffer supplied with KOD XtremeTM polymerase has been optimized for long targets. The addition of DMSO or other additives is generally not needed when using KOD XtremeTM polymerase.

I see smearing of my PCR products after thermocycling when using KOD. What is causing this and how can I get rid of it?

Because KOD has higher processivity and faster reaction times, it is important to adjust extension times to 10-25 s/kb. Smearing can be caused by too long or short extension times. If the smear is above the target size, extension time can be reduced by 5 s/kb and/or the Mg²⁺ concentration can be reduced in 0.25 mM increments. If the smearing is below the target size, we would recommend increasing the extension time by 5 s/kb and/or increasing the Mg²⁺ concentration in 0.25 mM increments. Smearing can also sometimes be reduced by reducing the amount of template DNA added to the reaction.

If not using a hot start enzyme, smearing can be caused by exonuclease activity during reaction setup. Reactions should be set up on ice to avoid degradation.

	KOD Hot Start	KOD Xtreme™ Hot Start	Polymerase Ph (Hot Start)	Polymerase PfuF (Hot Start)		
Company	Merck Millipore	Merck Millipore	Supplier N	Supplier S		
Target Size	genomic up to 12 kb phage/plasmid up to 21 kb	genomic up to 24 kb phage/plasmid up to 40 kb	genomic up to 7.5 kb	genomic up to 19 kb (use 5U/rxn for genomic > 6 kb) vector up to 20 kb		
Fidelity	50-fold higher than Taq	11-fold higher than Taq	52-fold higher than Taq	20-fold higher than Taq		
Ends	blunt	blunt	blunt	blunt		
Other target info		For targets up to 90% GC				
Enzyme/50 μL rxn	1 U/rxn	1 U/rxn	1 U/rxn	1 U/rxn		
Activate	95°C for 2 min	94 °C for 2 min	98°C for 30 s	95 °C for 2 min		
Denature	95°C for 20 s	98 °C for 10 s	98°C for 30 s	95 °C for 20 s		
Anneal	Lowest T _m for 10 s	Lowest T _m for 30 s	T _m + 3 °C for 30 s	Lowest T _m -5 °C for 20 s		
Extend	70°C for 2 min, 5 sec	68 °C for 5 min	72 °C for 1 min, 15 s	72 °C for 1 min, 15 s		
Final Extension time	n/a	n/a	72 °C for 10 min	72 °C for 3 min		
# of cycles	25	30	30	30		
Reaction time for a 5 kb target amplified from plasmid	1 h, 10 min	2 h, 51 min	1 h, 8 min	1 h, 3 min		

	Polymerase PfuT (Hot Start)	Polymerase PfuU (Hot Start)	Polymerase H (Hot Start)	Polymerase PX	
Company	Supplier S	Supplier S	Supplier S	Supplier I	
Target Size	genomic up to 19 kb phage up to 20 kb	genomic up to 6 kb (use 5 U/rxn for genomic > 6kb) vector up to 17 kb	genomic up to 37 kb vector up to 48 kb	up to 12 kb	
Fidelity	6-fold higher than Taq	18-fold higher than Taq	3-fold higher than Taq	26-fold higher than Taq	
Ends	blunt	blunt	mixed	blunt	
Other target info			For GC rich, long, and challenging targets		
Enzyme/50 μL rxn	2.5-5 U/rxn	2.5-5 U/rxn	2.5-5 U/rxn	1-2.5 U/rxn	
Activate	95 °C for 2 min	95 °C for 2 min	95 °C for 2 min	94 °C for 2 min	
Denature	95 °C for 30 s	98 °C for 30 s	98 °C for 30 s	94 °C for 15 s	
Anneal	Lowest T _m -5 °C for 30 s	Lowest T _m -5°C for 30 s	Lowest T _m -5 °C for 30 s	55 °C for 30 s	
Extend	72 °C for 5 min	72 °C for 10 min	10 cycles: 72 °C for 5 min 20 cycles; 72 °C for 5 min + 10 s/cycle	68 °C for 5 min	
Final Extension time	72 °C for 5 min	72 °C for 10 min	72 °C for 10 min	n/a	
# of cycles	30	30	30	30	
Reaction time for a 5 kb target amplified from plasmid	3 h, 12 min	3 h, 12 min	3 h, 43 min	2 h, 53 min	

11. PCR and Product-Specific Technical Notes

1. Comparing the Speed and Product Yield of 7 High Fidelity DNA Polymerases

Keith Yaeger and Keith Fourrier - EMD Millipore Corporation

Introduction

Thermococcus kodakaraensis (strain KOD1), previously thought to be a *Pyrococcus* sp., is a hyperthermophilic archaea isolated from a solfataric hot spring on Kodakara Island, Japan (Atomi 2004). In preliminary studies to characterize the KOD1 DNA polymerase, researchers found that the enzyme had fidelity comparable to *Pfu* DNA polymerase, but with an extension rate (referred to as speed) 5 times higher and processivity 10 to 15 times higher than the *Pfu* enzyme (Takagi 1997).

When amplifying DNA for cloning, high fidelity DNA polymerases, such as KOD polymerase, are recommended. If the enzyme is also fast and can generate high yields of full-length product, fewer amplification cycles are required and the probability of obtaining error-free clones is greatly increased. Since the preliminary KOD DNA Polymerase studies, significant work has been done to optimize the PCR buffer and cycling parameters. Another improvement is KOD Hot Start DNA Polymerase, which is a premixed complex of KOD DNA Polymerase and two monoclonal antibodies. The antibodies inhibit the $3' \rightarrow 5'$ exonuclease and DNA polymerase activities at ambient temperatures (Mizuguchi 1999), providing high template specificity by preventing primer degradation and mispriming events during reaction setup. This report evaluates the speed and product yield of KOD Hot Start DNA Polymerase in an optimized reaction buffer and compares the enzyme to 6 other commercially available high fidelity thermophilic DNA polymerases.

Materials and Methods

Thermocycler

DNA amplification was performed on MJ Research PTC-200 thermocyclers that had recently been calibrated by the manufacturer. Reactions were going to be done in tube strips, always using the same polymerase in the same location on each strip. To ensure no bias due to the location of the reaction in the strip or in the thermocycler, test reactions were performed using KOD Hot Start DNA Polymerase, and reaction yields measured. Yields were found to be comparable for all tube locations and wells tested (data not shown).

Reaction volume

Reaction volumes of 50, 25, 20, and 10 μ L were tested to determine an optimum volume for consistent PCR results (data not shown). Both 50- and 25- μ L reactions gave consistent results, and the 25- μ L volume was used for the remaining experiments.

Template

A 919-bp fragment of human GSK3 α (glycogen synthase kinase 3 α) catalytic domain ORF, 54% GC-content, in an Open Biosystems cDNA plasmid (MHS1010-7507851, GeneBank BC027984) was selected as the DNA template.

Primers/reagents

Primers used were HPLC purified:

(35-mer sense) 5'-GACGACGACAAGATTTCCCAAGAAGTGGCTTACAC-3' and

(41-mer antisense) 5'-GAGGAGAAGCCCGGTCTTAACATCGCAGTTCATCAAAGAAG-3'.

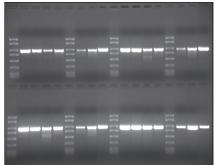
Bases shown in bold are homologous to the ORF. Table 1 shows the ion components used for each polymerase.

Table 1.

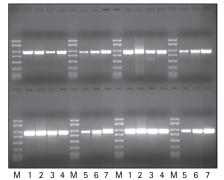
Reaction components and cycling profile for each DNA polymerase based on manufacturers' recommendations

	Cycling Profile 1		Cycling Profile 2		Cycling Profile 3		Cycling Profile 4	
Initial Denaturation	98 °C	30 s	94 °C	2 min	95 °C	2 min	95 °C	2 min
	98 °C	10 s	94 °C	15 s	95 °C	20 s	95 °C	20 s
29 cycles	55 °C	20 s	52 °C	20 s	55 °C	20 s	55 °C	10 s
	72 °C	30 s	68 °C	60 s	72 °C	30 s	70 °C	15 s
Final Extension	72 °C	5 min	68 °C	5 min	72 °C	3 min	N/A	

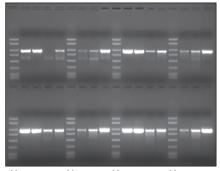
DNA Polymerase	Buffer	[Mg²+] in reacti added in 1X bu		[dNTP] (mM each)	[Primer] (mM each)	Template/ 25 μL reaction (ng)	Polymerase*/ 25 μL reaction	Cycling profile
KOD Hot Start	1x	1.5	1.5		0.3	5	0.5 U	4
KOD	1x	1.5		0.2	0.3	5	0.5 U	1
Pyrococcus Polymerase Hot Start (Supplier I)	1x	1.0		0.3	0.3	5	0.5 U	2
T. zilligii Polymerase (Supplier I)	1x	in buffer	1.2	0.3	0.3	5	2.5 U	2
Hot Start Polymerase Ph (Supplier N)	1x	in buffer	1.5	0.2	0.5	5	0.5 U	1
Pfu Hot Start Polymerase (Supplier A)	1x	in buffer	2.0	0.25	0.2	5	.5 μL (U not given)	3
Hot Start Polymerase PS (Supplier T)	1x	in buffer	1.0	0.2	0.3	5	0.625 U	3


^{*}Manufacturer defined units, used as recommended by manufacturer.

Cycling profiles


All 7 enzymes were tested in 4 different cycling protocols, which encompass the manufacturers' recommended cycling conditions (Table 1).

A. 23 cycles 25 cycles M 1 2 3 4 M 5 6 7 M 1 2 3 4 M 5 6 7


M 1 2 3 4 M 5 6 7 M 1 2 3 4 M 5 6 7 27 cycles 29 cycles (plus final extension)

B. 23 cycles 25 cycles M 1 2 3 4 M 5 6 7 M 1 2 3 4 M 5 6 7

27 cycles 29 cycles (plus final extension)

D. 23 cyclesM 1 2 3 4 M 5 6 7 M 1 2 3 4 M 5 6 7

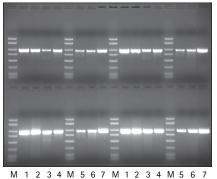

M 1 2 3 4 M 5 6 7 M 1 2 3 4 M 5 6 7 27 cycles 29 cycles

Figure 1.

PCR results from 7 high fidelity thermophilic DNA polymerases using 4 different cycling profiles.

PCR samples were removed after 23, 25, 27, and 29 cycles and 5 mL were assayed on 1.4% agarose/TAE gels. Lanes indicate the enzyme used for the reaction. Cycling profiles are defined in Table 2. (A) cycling profile 1 (Note: PicoGreen results indicate a yield increase with Hot Start Polymerase PS (Supplier T) from cycle 27 to cycle 29; the reduced band intensity here is a gel loading artifact), (B) cycling profile 2, (C) cycling profile 3, (D) cycling profile 4.

C. 23 cycles 25 cycles
M 1 2 3 4 M 5 6 7 M 1 2 3 4 M 5 6 7

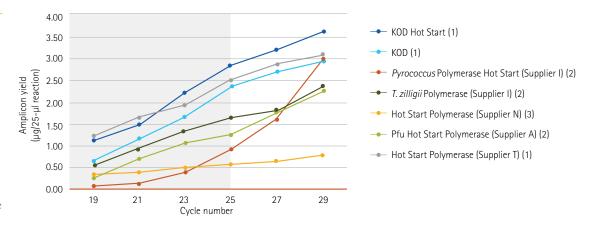
27 cycles 29 cycles (plus final extension)

Lane DNA Polymerase

KOD Hot Start

- 2 KO
- 3 Pyrococcus Polymerase Hot Start (Supplier I)
- 4 *T. zilligii* Polymerase (Supplier I)
- 5 Hot Start Polymerase Ph (Supplier N)
- 6 Pfu Hot Start Polymerase (Supplier A)
- 7 Hot Start Polymerase PS (Supplier T)

Results and Discussion


Different Cycling Profiles

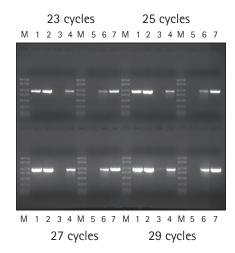
Multiple reaction strips were prepared using master mixes for each polymerase. After 19, 21, 23, 25, 27, and 29 cycles, reaction strips were removed and placed on ice. Samples (5 mL) from cycles 23, 25, 27, and 29 were assayed on 1.4% agarose/TAE gels containing ethidium bromide (Figure 1). Yield concentrations were determined on diluted samples from 19, 21, 23, 25, 27, and 29 cycles using a Quant-i™ PicoGreen® ds DNA Assay Kit (Invitrogen) and a FLUOstar plate reader (BMG LABTECH). New primers and enzyme kits were obtained and all experiments were repeated to verify initial results and trends. Results with the new reagents were comparable to the initial experiments (data not shown).

Yields generated by each enzyme at 19, 21, 23, 25, 27, and 29 cycles were plotted for each protocol (Figure 2). Not all enzymes gave their best yield using the manufacturer's recommended cycling conditions, so the best yields for each enzyme, from any cycling protocol, were compared (Figure 2). For cloning purposes, fewer reaction cycles increase the potential for error-free clones. Cycles 19-25 have been shaded green on the graph to emphasize the reaction yields from these earlier cycles. KOD Hot Start DNA Polymerase consistently gave high yields in cycles 19-25 for all 4 profiles tested (data not shown).

Figure 2.
Best yield for each high fidelity thermophilic enzyme from any cycling profile

Yields were determined by PicoGreen® analysis after 19,21, 23, 25, 27, and 29 cycles for all 4 cycling profiles (Table 2). The best yield data for each enzyme, from any cycling profile, was graphed. The cycling profile that gave the best yields is identified in parentheses. The green shaded area highlights yields in cycles 19–25, which would be preferable for cloning.

Two-step PCR


Different Cycling Profiles

Longer primers (generally \ge 23 bases) can increase PCR specificity and, due to higher annealing temperatures, can be used in time-saving two-step cycling profiles. KOD Hot Start DNA Polymerase and the other 6 high fidelity enzymes were tested in a two-step protocol (initial denaturation at 95 °C for 2 min, and 29 cycles of 95 °C for 20 s, 68 °C for 40 s). Figure 3 shows that not all enzymes functioned well with this two-step protocol (lanes with little or no product). Other enzymes, including the two KOD enzymes, generated high yields comparable to the three-step protocols shown in Figure 1.

Figure 3.

PCR results from 7 high fidelity enzymes using a two-step cycling profile.

PCR samples were removed after 23, 25, 27 and 29 cycles of a two-step protocol and 5 mL were assayed on 1.4% agarose/TAE gels. Lanes indicate the enzyme used for the reaction.

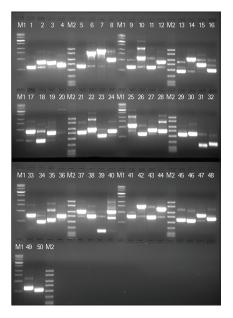
Lane DNA Polymerase
1 KOD Hot Start
2 KOD
3 Pyrococcus Polym

4

Pyrococcus Polymerase Hot Start (Supplier I)
T. zilligii Polymerase (Supplier I)

Hot Start Polymerase Ph Supplier N
 Pfu Hot Start Polymerase (Supplier A)
 Hot Start Polymerase PS (Supplier T)

/ Hot Start Polymerase PS (Supplier I


KOD Application - Screening Plaques

Testing the ability of KOD Hot Start DNA Polymerase to amplify a variety of DNA templates, the enzyme was used in a two-step cycling profile to screen random clones from the T7Select® Human Brain cDNA Library (Merck Millipore Cat. No. 70637). Plaques were eluted in 100 µL TE (10 mM Tris-HCl, 0.1 mM EDTA) and 5 µL eluate was used for PCR. Primers were: sense primer 5′-ACT TCC AAG CGG ACC AGA TTA TCG C-3′ and antisense primer 5′-AAC CCC TCA AGA CCC GTT TAG AGG-3′. Reactions were cycled with an initial denaturation at 95 °C for 2 min, and 25 cycles of 95 °C for 20 s, 68 °C for 25 s. Of the 50 clones screened, KOD successfully amplified 49 inserts (Figure 4). Amplicons ranged in size from ~250-1800 bp.

KOD DNA polymerase (pol) fidelity in PCR has been assayed by different methods. Initial studies by Takagi et al. (1997) measured the mutation frequency in amplicons after 30 PCR cycles using a plasmid template containing the lacZ gene.

By comparing the number of white and light blue colonies (mutant) to the total number of colonies (including blue, intact lacZ colonies), they determined mutation rates of 2.8% for KOD DNA pol, 3.6% for *Pfu* DNA pol, and 48.0% for *Taq* DNA pol.

Using the same blue/white assay method, but with 25 cycles, Nishioka et al. (2001) found mutation frequencies of 0.79% for KOD DNA pol and 28.1% for *Taq* DNA pol. Rual et al. (2004) directly sequenced ~70,000 bases and determined a misincorporation rate of 1 in 35,000 nucleotides for KOD DNA pol compared to 1 in 2,000 nucleotides for Platinum® *Taq* DNA Polymerase High Fidelity in amplicons generated after 20 cycles of PCR. Discrepancies in mutation rates can be due to the different assay methods, as well as to thermal degradation of DNA at high temperatures, which is not related to enzyme function (Tindall 1988, Pienaar 2006). What stands out in these independent assays is the consistent high fidelity of KOD DNA pol.

Figure 4.

Results from KOD Hot Start amplification of T7Select® Human cDNA Library clones

PCR was performed as stated in the text; 5 µL of each 25-µL reaction were assayed on a 1.4% agarose/TAE gel. KOD Hot Start successfully amplified 49 of 50 clones with amplicons ranging from ~250-1800 bp.

Lane Sample

M1 Perfect DNA™ Markers, 0.5-12 kbp

M2 PCR Markers

Conclusion

A number of independent studies have verified the extremely high fidelity of KOD DNA Polymerase. In addition to a low mutation frequency, the fast extension rate and high processivity of the KOD enzyme result in high yields of full-length product in fewer reaction cycles. Combined, these attributes have made KOD Hot Start DNA Polymerase the PCR enzyme of choice for many routine and high throughput cloning and structural proteomics studies.

References

Atomi, H. et al. 2004. *Archaea* 1, 263.

Mizuguchi, H. et al. 1999. *J. Biochem*. (Tokyo) 126, 762.

Nishioka, M. et al. 2001. *J. Biotech*. 88, 141.

Pienaar, E. et al. 2006. *Comp. Biol. Chem*. 30, 102.

Rual, J-F. et al. 2004. *Genome Res*. 14, 2128.

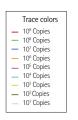
Takagi, M. et al. 1997. *Appl. Environ. Microbiol*. 63, 4509.

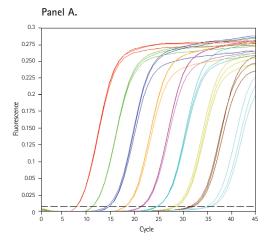
Tindall, K.R. and Kunkel, T.A. 1988. *Biochemistry* 27, 6008.

2. Reliable and Robust Quantitative (Real-Time) PCR Amplification Using NovaTaq™ Hot Start Master Mix

Hope Schultz and Keith Yaeger - EMD Millipore Corporation

Introduction


Quantitative PCR (real-time PCR or qPCR) methods are used to determine the level of specific mRNA or DNA sequences. These methods may be used to analyze gene expression, genotyping studies, pathogen detection and more. We have demonstrated that NovaTaq™ Hot Start Master Mix can be used in real-time PCR amplification of various templates to obtain reproducible results and robust amplification of low copy number genes. In this article, a comparison of competitors' PCR mixes indicates NovaTaq™ Hot Start Master Mix provides superior amplification and specificity.


Real-time PCR Amplification from cDNA with NovaTag™ Hot Start Master Mix

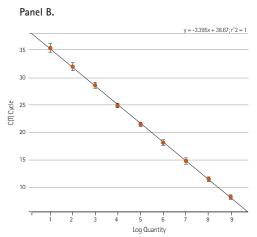

Real-Time PCR was performed using a linearized plasmid containing the glycogen synthase kinase 3 α (GSK3 α) cDNA. The stock DNA at 5 \times 10 8 copies/ μ l was 10-fold serially diluted in TE and reactions were run in triplicate. The following parameters were used on the Chromo4 Real-Time PCR Detection System (Bio-Rad): initial denaturation at 95 $^{\circ}$ C for 10 minutes; followed by 94 $^{\circ}$ C for 30 seconds, 54 $^{\circ}$ C for 30 seconds, and 72 $^{\circ}$ C for 10 seconds for 45 cycles. The primer/probe mix was designed to target a 112 bp amplicon of GSK3 α . DNA was detected using a HEX-labeled probe.

Figure 1A shows the qPCR amplification curves showing the reproducibility of the amplification using NovaTaq™ Hot Start Master Mix Kit over a range of template concentrations. In figure 1B, the cycle threshold (Ct) is plotted against DNA concentration. This yielded a standard curve with a correlation of 1, showing that NovaTaq™ Hot Start Master Mix gave linear results for 10 to 10° copies of the plasmid.

Figure 1. Linearized cDNA plasmid amplified using NovaTaq™ Hot Start Master Mix

Quantitative Real-Time PCR Amplification from Human Genomic DNA with NovaTaq™ Hot Start Master Mix

Human genomic DNA (Merck Millipore Cat No. 69237) was serially diluted 10-fold in TE (10 mM Tris, pH 8 from 50 ng/ μ L. The primer/probe mix was designed to target a 139 bp amplicon of GSK3 α . The cycling profile using the Bio-Rad Chromo4 Real-Time PCR Detection System was: initial denaturation at 95 °C for 10 minutes; followed by 94 °C for 30 seconds, 54 °C for 30 seconds, and 72 °C for 10 seconds for 45 cycles. DNA was detected using a HEX-labeled probe. All reactions were performed in triplicate. Amplification was detected from as little as 3 copies per reaction as indicated by the amplification curves (Figure 2A).

Plotting Ct vs. DNA concentration (Figure 2B) yielded linear results for 0.01 to 100 ng genomic DNA. Note that 0.001 ng would correlate to about 0.3 copies of the target sequence and one of the three experiments performed in triplicate gave a signal while the other two experiments did not yield any signal.

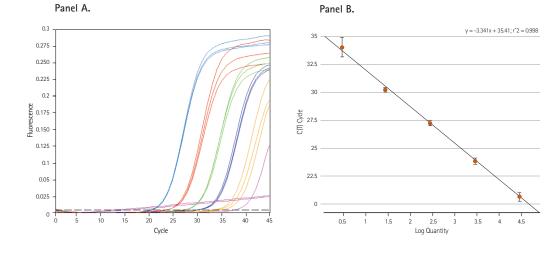


Figure 2.

Serially diluted human genomic DNA amplified using NovaTaq™ Hot Start Master Mix

Performance of NovaTaq[™] Hot Start Master Mix in quantitative PCR versus PCR mixes from other suppliers.

Total RNA was isolated from mouse 3T3 cells and cDNA was synthesized using MMLV reverse transcriptase. A 122 bp region of the mouse β -actin coding sequence was amplified from 15 ng/ μ L of cDNA using NovaTaq $^{\text{TM}}$ Hot Start DNA Polymerase or qPCR mixes from the indicated manufacturer. DNA was detected using SYBR $^{\text{SR}}$ Green dye. Each reaction was performed in triplicate. The following parameters were used with a Corbett Rotor-gene $^{\text{SR}}$ 6000: initial denaturation at 95 °C for 10 min; followed by 95 °C for 10 s, 55 °C for 15 s, and 72 °C for 20 s for 40 cycles. The amplification curves are shown on the right. The melting analysis (curves shown on the left) was done with a temperature range of 60 °C to 99 °C, acquiring data at each degree. A single peak in the melting curve demonstrates specificity of the reaction. Multiple peaks indicate that secondary products were also amplified.



Figure 3.

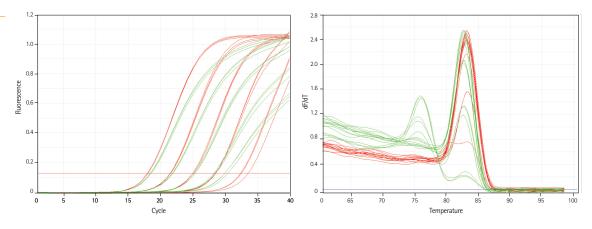
NovaTaq™ Hot Start DNA

Polymerase – Red

Supplier I Polymerase –

Green

Supplier I Polymerase shows lower amplification efficiency as indicated by the lower fluorescence intensity.


Figure 4. NovaTaq™ Hot Start DNA Polymerase – Red Supplier Q Polymerase – Green

NovaTaq™ Hot Start DNA Polymerase shows superior amplification efficiency as indicated by the much higher fluorescence intensity.

Figure 5.

NovaTaq™ Hot Start DNA Polymerase – Red Supplier K Polymerase – Green

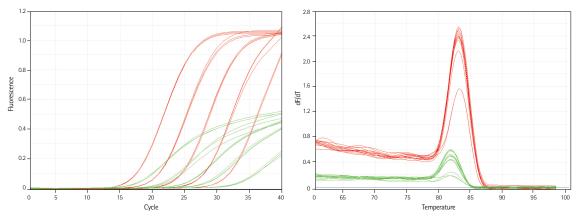

Supplier K Polymerase demonstrates poor reaction specificity as demonstrated by the multiple peaks in the melting curve.

Figure 6.

NovaTaq™ Hot Start DNA Polymerase – Red Supplier S Polymerase – Green

NovaTaq™ Hot Start DNA Polymerase shows superior amplification efficiency as indicated by the much higher fluorescence intensity.

Summary

We have demonstrated that NovaTaq[™] Hot Start Master Mix Kit may be used for real-time quantitative PCR of plasmid, genomic, and first strand cDNA. The data obtained using this enzyme master mix are reproducible, indicating that the master mix can be used for the analysis of low copy number genes. NovaTaq[™] Hot Start Master Mix has a higher amplification efficiency and specificity than PCR mixes from other suppliers.

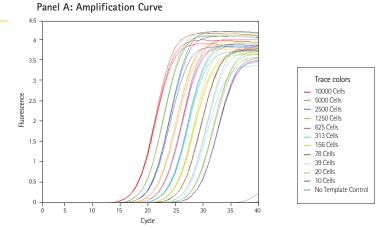
3. One Step Quantitative (Real-Time) PCR Amplification of mRNA Using the One Step RT-PCR Master Mix Kit

Hope Schultz and Keith Yaeger - EMD Millipore Corporation

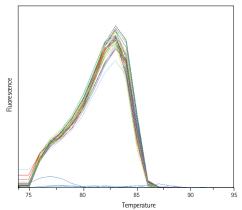
Introduction

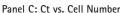
Reverse transcription followed by polymerase chain reaction (RT-PCR) allows amplification and detection of very low amounts of RNA. The technique is important for gene expression profiling and RNA virus detection. In addition to using purified RNA as a template, RT-PCR kits may be used directly with crude lysates of mammalian cells, a technique that can be used to compare mRNA levels in different cells. Merck Millipore's Novagen® One Step RT-PCR Master Mix Kit allows for mRNA reverse transcription and amplification in a single tube because it contains recombinant *Thermus thermophilus* (*rTth*) DNA Polymerase, which functions as both a thermostable RNA-dependent DNA polymerase and a DNA-dependent DNA polymerase. The anti-*rTth* antibody included in the mix enhances the specificity of the reverse transcription by binding the polymerase and reducing mispriming during reaction assembly. The high optimal temperature for polymerization by *rTth* polymerase in reverse transcription offers the advantage of increased success by reducing secondary mRNA structure and the single reaction setup reduces chances of contaminating the samples with exogenous DNA, RNA or nucleases, allowing for sensitive detection of RNA. One Step RT-PCR Master Mix Kit is compatible with SYBR® Green, providing fluorescent signal to detect the amplified region and melt analysis to confirm homogeneity of product. In this article, the One Step RT-PCR Master Mix Kit was used to amplify reverse-transcribed mRNA directly from mammalian extracts. Duplex RT-PCR using the same crude extract demonstrates that the One Step RT-PCR Master Mix can be used to analyze two targets in a single reaction when probes are used as the detection method.

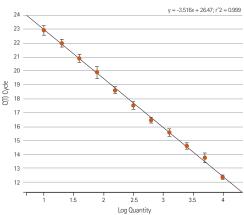
Quantitative (Real-Time) PCR from Crude Lysate

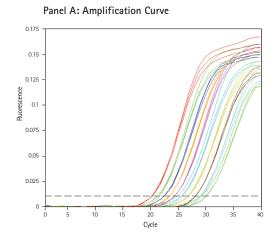

To test the ability of the One Step RT-PCR Master Mix Kit to amplify mRNA from HeLa cell lysates in a quantitative (real-time) PCR reaction using SYBR® Green I for detection, HeLa cells (5X10⁵ cells) were cultured in DMEM, pelleted, and stored at -70 °C. The cell pellet was treated with 50 μL of CytoBuster™ Protein Extraction Reagent (Merck Millipore, Cat. No. 71009) to lyse cells and 40 units RNase Inhibitor (Merck Millipore, Cat. No. 556881). 50 μL of TE (10 mM Tris, pH 8, 1 mM EDTA) + 0.02% Triton® X-100 was added to yield a lysate containing 5000 cell equivalents/μL. The lysate was two-fold serially diluted in TE + 0.02 % Triton® X-100, and 2 μL of each dilution was used as template in 50 μL RT-PCR reactions that were done in triplicate. The primers used targeted a 99 bp amplicon from exon 3 to exon 4 of cyclophilin B (PPIB, genomic accession NT_010194.16). PCR was performed using a Chromo4 Real-Time PCR Detection System (Bio-Rad) and SYBR® Green I was used from Invitrogen. Table 1 contains the cycling parameters.

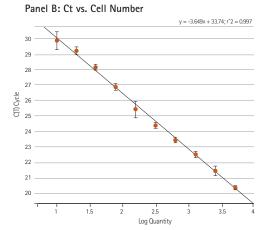
Cycling Step	Time/temperature
1. Polymerase Activation	90 °C for 30 s
2. Reverse Transcription	60 °C for 15 min
3. Denaturation	94 °C for 30 s
4. Denaturation	95 °C for 1 s
5. Annealing	50 °C for 15 s
6. Extension	72 °C for 5 s
Repeat Steps 4-6 for 40 cycles	

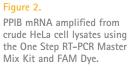

Table 1.
Thermocycling parameters

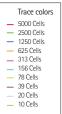

We observed excellent yield and reproducibility as shown in the amplification curves (Figure 1A). The signals titrated from 10,000 to 10 cells as shown by the standard curve with a correlation of 0.999 (Figure 1C). The melting curve (Figure 1B) shows that a single product was amplified.

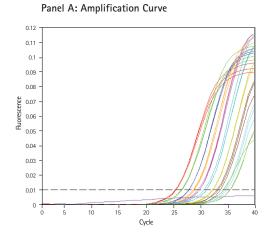

Figure 1.
PPIB mRNA amplified from crude HeLa lysates








Duplex Quantitative (Real-Time) PCR with One-Step RT-PCR Master Mix


The template used in the duplex RT- PCR experiment was the same HeLa cell preparation used in the SYBR® Green I experiments described above. Primer Set I targeted a 99 bp amplicon spanning from exon 3 to exon 4 of PPIB. Primer Set II targeted an 112bp amplicon spanning from exon 4 to exon 5 of glycogen synthase kinase 3 alpha (GSK3 α , genomic accession NC_000019). FAM Dye was used to detect PPIB and HEX dye was used to detect GSK3 α . Reactions were performed in triplicate using the Chromo4 Real-Time PCR Detection System (Bio-Rad) with the cycling conditions described in Table 1. The plate was read after step 5 for these experiments. Figures 2 and 3 shows that PPIB and GSK3 α are efficiently amplified in the same reaction and the signal titrates well from 5000 to 10 cells with a standard curve with a correlation coefficient of 0.997.

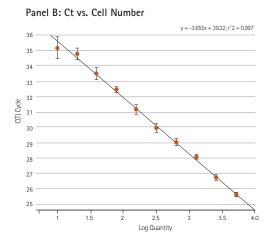
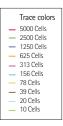



Figure 3.
GSK3α mRNA amplified from crude HeLa cell lysates using the One Step RT-PCR Master Mix Kit and HEX Dye.

Summary

Quantitative (real-time) reverse transcription PCR is a powerful technique in functional proteomics.

Merck Millipore's Novagen® One Step RT-PCR Master Mix Kit provides results that are reproducible and robust.

4. Detection of Shiga Toxin-producing *E. coli* Using Multiplex Direct Colony PCR with KOD XL DNA Polymerase

Okitsu, T., Suzuki, R., Yamai, H.

Bacterial Pathology Department, Kanagawa Prefecture Health Research Institute, Japan

Introduction

Certain strains of *E. coli* are known to produce a family of related toxins, referred to as Shiga toxin 1 (*Stx1*, encoded by *stx1*) and Shiga toxin 2 (*Stx2*, encoded by *stx2*). Shiga toxin-producing *E. coli* (STEC), represented by serotype 0157:H7, has a strong infectious capacity and pathogenicity. In recent years, this bacterium has been affecting an increasing number of victims, resulting in life-threatening illness such as hemorrhagic colitis, hemolytic- uremic syndrome, and thrombotic thrombocytopenic purpura¹. The morbidity and mortality associated with STEC disease highlight the threat these organisms pose to public health.

For this reason, there is an increasing demand for fast and efficient methods for the detection of virulent strains of STEC in fecal samples and in meat and dairy products. PCR is generally considered the most sensitive means for determining if a food or fecal sample contains STEC. A multiplex PCR method developed by Paton and Paton² enables simultaneous determination of *stx1*, *stx2*, and correlated genes that encode accessory STEC virulence factors, such as *eaeA* and *hlyA*, in crude DNA extracts from primary fecal cultures.

In this study, we developed a rapid typing system for STEC that improves upon the original multiplex PCR assay. With our method, a bacterial colony from a food or fecal culture was used directly as the template. In addition, four target genes were examined for the presence of the IS1203v insertion sequence discovered in *stx2* genes^{3,4} with IS1203v-specific primers. To reduce the time needed for the PCR, Taq DNA polymerase was replaced with the faster KOD XL DNA Polymerase*. Multiplex CD-PCR analysis for eleven STEC strains and one control K-12 strain isolated at Kanagawa Prefecture, Japan, between 1996 and 1999 was performed (Figure 1).

Component	Concentration
PCR buffer for KOD XL	1X
dNTP mix	0.2 mM
stx1 primers (stx1-F + stx1-R)	0.2 μM each
stx2 primers (stx2-F + stx2-R)	0.2 μM each
eaeA primers (eaeA-F + eaeA-R)	0.2 μM each
hlyA primers (hlyA-F + hlyA-R)	0.2 μM each
IS1203v primers (1203v-F + 1203v-R)	0.1 μM each
Bacterial cells	approximately 10⁴ cfu
KOD XL DNA Polymerase	2.5 U

 $^{^{\}rm 1}{\rm When}$ using KOD XL DNA Polymerase, set up the PCR on ice.

Table 1 identifies the final concentrations of the PCR components PCR were performed using the following conditions: initial denaturation at 94 °C for 5 minutes, 30 cycles of 98 °C for 15 seconds, 60 °C for 5 seconds, and 74 °C for 30 seconds. After the PCR, one-tenth of the reaction solution was analyzed by agarose gel electrophoresis (2% TAE gel, Figure 1).

The results of the multiplex PCR showed a clear amplification for each target: 180 bp for *stx1*, 255 bp for *stx2*, 384 bp for *eaeA*, 534 bp for *hlyA*, and 910 bp for *IS1203v*, in 11 STEC strains (Figure 1). Amplification of the target genes from the control K-12 strain was negative. The results clearly demonstrated that this system is effective for STEC typing.

Lane Sample

M Markers (100-bp ladder)

1-11 STEC strains

12 K-12 strain

Figure 1.

STEC identification by CD-

Eleven STEC strains and one K–12 strain were used for CD–PCR. Reaction products were analyzed by agarose gel electrophoresis and stained with ethidium bromide.

Summary

By using KOD XL DNA Polymerase, PCR was completed in less than 1.5 hours, a significant time savings compared to the nearly 3.5 hours required by the original method, representing a great advantage when multiple specimens require quick processing.

References

- 1. Karmali, M. A. (1989) Clin. Microbiol. Rev. 2, 15-38.
- 2. Paton, A. W. and Paton, J. C. (1998) J. Clin. Microbiol. 36, 598-602.
- 3. M., Nishiya, Y., Kawamura, Y., and Shinagawa, K. (1999) J. Biosci. Bioeng. 87, 93-96.
- 4. Okitsu, T., Suzuki, R, and Yamai, S. (2001) Upload 63 (Toyobo Co., Ltd., Japan newsletter).

12. Troubleshooting Guides

(I) KOD Xtreme[™] Hot Start DNA Polymerase

Symptom	Possible cause	Solution
No PCR product	Annealing temperature is too high	Lower annealing temperature in 3 °C increments
	PCR primers are not long enough	Use primers longer than 21 bases
Low yield	Suboptimal PCR conditions	Increase number of cycles
Smearing	Too much template DNA	Reduce the amount of template DNA
Smearing below target size	Extension times are too short	Increase extension time 10 s/kbp
Smearing above target size	Extension times too long	Reduce extension time 10 s/kbp
Primer dimers	Primers are complementary to each	Design primers that do not form hairpins (are not self complementary) or dimers (are not complementary to each other)
	Primer concentration is too high	Reduce primer concentration
	Annealing temperature too low	Raise annealing temperature
Unexpected mutation	Denaturation step is too long	Lower denaturation time to 5 s or 1 s.

(II) KOD Hot Start DNA Polymerase

Symptom	Possible cause	Solution
No PCR product	Extension time is too long	Lower extension time to 15 s/kpb
	Too much secondary structure in template DNA	Add DMSO to a final concentration of 5–10% v/v
	PCR primers are not long enough	Use primers longer than 21 bases
	Annealing temperature is too high	Lower annealing temperature in 3 °C decrements
Low yield	High GC content	Add DMSO to a final concentration of 5–10% v/v
	Suboptimal PCR conditions	Increase final MgSO ₄ concentration in 0.25 mM increments
	Long target DNA	Increase final MgSO ₄ concentration in 0.25 mM increments
Smearing	Too much template DNA	Reduce the amount of template DNA
Smearing below target size	Extension times are too short	Increase extension time 5 s/kbp
	MgSO ₄ concentration too low	Increase final MgSO ₄ concentration 0.25 mM increments
Smearing above target size	Extension times too long	Reduce extension time 5 s/kbp
	MgSO ₄ concentration too high	Decrease final MgSO ₄ concentration in 0.25 mM increments
Primer dimers	Primers are complementary to each other	Design primers that are not self-complementary or complementary to each other
	Primer concentration is too high	Reduce primer concentration
	Annealing temperature too low	Raise annealing temperature

(III) KOD Hot Start Master Mix

Symptom	Possible cause	Solution
No PCR product	Extension time is too long	Lower extension time to 15 s/kpb
	Too much secondary structure in template DNA	Add DMSO to a final concentration of 5–10% v/v
	PCR primers are not long enough	Use primers longer than 21 bases
	Annealing temperature is too high	Lower annealing temperature in 3 °C steps
Low yield	High GC content	Add DMSO to a final concentration of 5–10% v/v.
	Incomplete extension	Increase extension time 5 to 10 s/kbp
	Inefficient polymerization	Increase number of cycles
Smearing	Too much template DNA	Reduce the amount of template DNA
Smearing below target size	Extension times are too short	Increase extension time 5 s/kbp
Smearing above target size	Extension times too long	Reduce extension time 5 s/kbp
	Extension temperature too high	Reduce extension temperature 3 to 5 °C
Primer dimers	Primers are complementary to each other	Design primers that are not self-complementary or complementary to each other
	Primer concentration is too high	Reduce primer concentration
	Annealing temperature too low	Raise annealing temperature

(IV) KOD XL DNA Polymerase

Symptom	Possible cause	Solution
No PCR product	PCR primers are not long enough	Use primers longer than 21 bases.
Smear instead of distinctive DNA band on agarose gel	Reactions were not set up on ice	The reaction should be set up on ice and the KOD XL should be added last to the PCR reaction mix to prevent degradation of the primers and template.
	Suboptimal PCR conditions	Reduce the units of KOD XL DNA Polymerase and/or decrease the extension time.
Low yield	High GC content/long target DNA	Add DMSO to a final concentration of 2–5%. DMSO concentration less than 5% does not change enzyme fidelity.
Multiple Bands	Long target DNA	For target DNA over 8 kbp, increasing the dNTP concentration to 0.35 mM may reduce the appearance of multiple bands.

(V) KOD DNA Polymerase

Symptom	Possible cause	Solution
No PCR product	Target size too large	Use a smaller target size. KOD amplifies up to 2 kbp genomic DNA and up to 6 kpb plasmid and phage DNA targets.
Smear instead of distinctive DNA band on agarose gel	Reactions were not set up on ice	The reaction should be set up on ice and the KOD should be added last to the PCR reaction mix to prevent degradation of primers and template.
	Suboptimal PCR conditions	Decrease annealing and extension times according to the table on page 2. KOD extension rate is faster than other thermostable polymerases and longer extension times can cause smearing.
Low yield	High GC content	Add DMSO to a final concentration of 2–5%. DMSO does not change enzyme fidelity.
	Long target/genomic DNA	Using PCR Buffer #2 may enhance the quality and quantity of the PCR product. Add DMSO to a final concentration of 2–5%. DMSO does not change enzyme fidelity.
	Low amount of template	For plasmid or phage DNA 0.006–6 ng of template is adequate. Genomic and cDNA templates may require up to 12 ng.

(VI) One Step RT-PCR Master Mix Kit

Symptom	Possible cause	Suggestion
Target cDNA band is not observed	Enzymes are inactivated due to incorrect storage.	Use the positive control RNA and primers to test the enzyme performance.
	The annealing temperature is not optimal	Change the annealing temperature to 5 °C below the $\rm T_{\rm m}$ value.
	Primer sequence is incorrect	Redesign primers to be more complementary to the target gene. The 3' end of the primers should be completely complementary to the template. The primers should have a GC content of 40–60%. Check that the primer sequences are not self complementary, especially at the 3' end.
	The reaction conditions and/or cycling times are not optimal	The amplification conditions described on p 3 are optimal for 0.1–1 kbp products. For a longer product increase reverse-transcription time and the PCR extension time. Note that the limit for robust amplification is \sim 1 kbp.
	Template RNA is poor quality and/or degraded	Perform gel analysis of the template RNA to determine the RNA quality. The A_{260}/A_{280} ratio should be >1.7. SDS, NaCl, heparin and guanidine thiocyanate from RNA purification methods can interfere with RT-PCR. Reduce the volume of RNA, perform additional purification steps or change purification method to avoid interference. Use RNase-free reagents and equipment.
	Insufficient template RNA	Increase the amount of template RNA in the reaction (up to 1000 ng).
Multiple products are observed from the RT-PCR	The primer sequence is not specific to the desired target	Redesign the primers.
reaction	The annealing temperature is not optimal	Change the annealing temperature to 5 °C below the $T_{\scriptscriptstyle m}$ value.
	The T_m value of the primers is low	Use primers with higher T_m value.
	Number of cycles is too high	Try reducing the number of cycles; optimal range is 20–50 cycles. Increase the amount of template RNA.
	Mn(OAc) ₂ concentration is insufficient	Usually 2.5 mM is optimal for RT-PCR but a range between 1–4 mM may be used.
	Genomic DNA contaminationindicated by higher molecular weight product than expected.	Note that genomic DNA may amplify with gene specific primers. Perform a control reaction using a DNA polymerase without reverse transcriptase activity (e.g. NovaTaq™ DNA polymerase) instead of r <i>Tth</i> DNA Polymerase. If amplification from the NovaTaq™ reaction occurs, then the template is contaminated with DNA.
	Multiple cDNA products may be obtained from multigene families or alternatively spliced genes	Redesign primers to ensure specificity, as appropriate. Sequence products to verify identity.

13. Citations

References:

(I) KOD Xtreme™ Hot Start DNA Polymerase

- 1. Mizuguchi, H., Nakatsuji, M., Fujiwara, S., Takagi, M. and Imanaka, T. (1999) J. Biochem (Tokyo) 126, 762-768.
- 2. Kitabayashi, M., Nishiya, Y., Esaka, M., Itakura, M., and Imanaka, T. (2002) Biosci. Biotechnol. Biochem. 66, 2194-2200.
- 3. Fujii, S., Akiyama, M., Aoki, K., Sugaya, Y., Higuchi, K., Hiraoka, M., Miki, Y., Saitoh, N., Yoshiyama, K., Ihara, K., Seki, M., Ohtsubo, E., and Maki, H. (1999) *J. Mol. Biol.* 289, 835–850.
- 4. Breslauer, K. J., Frank, R., Blocker, H. and Marky, L. A. (1986) Proc. Natl. Acad. Sci. 83, 3746-3750.
- 5. Pienaar E, Theron M, Nelson M, Viljoen HJ (2006) Comput Biol Chem. 30, 102-111.

(II) KOD Hot Start DNA Polymerase

- 1. Mizuguchi, H., Nakatsuji, M., Fujiwara, S., Takagi, M. and Imanaka, T. (1999) J. Biochem (Tokyo) 126, 762-768.
- 2. Kitabayashi, M., Nishiya, Y., Esaka, M., Itakura, M., and Imanaka, T. (2002) Biosci. Biotechnol. Biochem. 66, 2194–2200.
- 3. Fujii, S., Akiyama, M., Aoki, K., Sugaya, Y., Higuchi, K., Hiraoka, M., Miki, Y., Saitoh, N., Yoshiyama, K., Ihara, K., Seki, M., Ohtsubo, E., and Maki, H. (1999) *J. Mol. Biol.* 289, 835–850.
- 4. Breslauer, K. J., Frank, R., Blocker, H. and Marky, L. A. (1986) Proc. Natl. Acad. Sci. 83, 3746-3750.
- 5. Howley, P. M., Israel, M. A., Law, M. F. and Martin, M. A. (1979) J. Biol. Chem. 254, 4876–4883.
- 6. Cheng, S., Fockler, C., Barnes, W. M., and Higuchi, R. (1994) Proc. Natl. Acad. Sci. USA 91, 5695-5699.
- 7. Winship, P. R. (1989) Nucleic Acids Res. 17, 1266.

Application	Reference	
Colony-direct PCR with Gram-positive bacteria	Tsuchizaki, N. and Hotta, K. (2003) inNovations 17, 9–11.	
Elongation PCR	Gao, X., Yo, P., Keith, A., Ragan, T. J., and Harris, T. K. (2003) Nucleic Acids Res. 31, e143.	
Gene cloning	Schilling, O., Spath, B., Kostelecky, B., Marchfelder, A., Meyer-Klaucke, W., and Vogel, A. (2005) J. Biol. Chem. 280, 17857–17862.	
	Williams, M. E., Burton, B., Urrutia, A., Shcherbatko, A., Chavez-Noriega, L. E., Cohen, C.J., and Aiyar J. (2005) J. Biol. Chem. 280, 1257–1263.	
	Miyazato, T., Toma, C., Nakasone, N., Yamamoto, K., and Iwanaga, M. (2003) J. Med. Microbiol. 52, 283–288.	
Gene cloning using consensus shuffling	Sagara, N. and Katho, M. (2000) Cancer Res. 60, 5959–5962.	
Multiplex cDNA-PCR	Miyazato, T., Toma, C., Nakasone, N., Yamamoto, K., and Iwanaga, M. (2003) J. Med. Microbiol.	
Multiplexed SNP genotyping	Higasa, K. and Hayashi, K., (2002) Nucleic Acids Res. 30, e11.	
Mutagenesis	Tabuchi, M., Tanaka, N., Nishida-Kitayama, H., Ohno, H., and Kishi, F. (2002) Mol. Biol. Cell 13, 4371–5387.	
	Matsumoto, N., Mitsuki, M., Tajima, K., Yokoyama, W. M., and Yamamoto, K. (2001) J. Exp. Med. 193 147–158.	
PCR for PCR-Mass spectrometry based analysis	Benson, L. M., Null, A. P., and Muddiman, D. C. (2003) J. Am. Soc. Mass. Spectrom. 14, 601–604.	
PCR for sequence analysis	Okamoto, T., Yoshiyama, H., Nakazawa, T., Park, I. D., Chang, M. W., Yanai, H., Okita, K., and Shirai, M (2002) J. Antimicrob. Chemother. 50, 849–856.	
Second strand cDNA synthesis	Hirohashi, Y., Torigoe, T., Maeda, A., Nabeta, Y., Kamiguchi, K., Sato, T., Yoda, J., Ikeda, H., Hirata, K., Yamanaka, N., and Sato, N. (2002) Clin. Cancer Res. 8, 1731–1739.	

(III) KOD Hot Start Master Mix

- 1. Mizuguchi, H., Nakatsuji, M., Fujiwara, S., Takagi, M. and Imanaka, T. (1999) J. Biochem (Tokyo) 126, 762-768.
- 2. Kitabayashi, M., Nishiya, Y., Esaka, M., Itakura, M., and Imanaka, T. (2002) Biosci. Biotechnol. Biochem. 66, 2194-2200.
- 3. Fujii, S., Akiyama, M., Aoki, K., Sugaya, Y., Higuchi, K., Hiraoka, M., Miki, Y., Saitoh, N., Yoshiyama, K., Ihara, K., Seki, M., Ohtsubo, E., and Maki, H. (1999) *J. Mol. Biol.* 289, 835–850.
- 4. Breslauer, K. J., Frank, R., Blocker, H. and Marky, L. A. (1986) Proc. Natl. Acad. Sci. 83, 3746–3750.
- 5. Cheng, S., Fockler, C., Barnes, W. M., and Higuchi, R. (1994) Proc. Natl. Acad. Sci. USA 91, 5695-5699.
- 6. Winship, P. R. (1989) Nucleic Acids Res. 17, 1266.

Application	Reference
Colony-direct PCR with Gram-positive bacteria	Tsuchizaki, N. and Hotta, K. (2003) inNovations 17, 9–11.
Elongation PCR	Gao, X., Yo, P., Keith, A., Ragan, T. J., and Harris, T. K. (2003) Nucleic Acids Res. 31, e143.
Gene cloning	Schilling, O., Spath, B., Kostelecky, B., Marchfelder, A., Meyer-Klaucke, W., and Vogel, A. (2005) J. Biol. Chem. 280, 17857–17862.
	Williams, M. E., Burton, B., Urrutia, A., Shcherbatko, A., Chavez-Noriega, L. E., Cohen, C.J., and Aiyar, J. (2005) J. Biol. Chem. 280, 1257–1263.
	Miyazato, T., Toma, C., Nakasone, N., Yamamoto, K., and Iwanaga, M. (2003) J. Med. Microbiol. 52, 283–288.
Gene cloning using consensus shuffling	Sagara, N. and Katho, M. (2000) Cancer Res. 60, 5959–5962.
Multiplex cDNA-PCR	Miyazato, T., Toma, C., Nakasone, N., Yamamoto, K., and Iwanaga, M. (2003) J. Med. Microbiol.
Multiplexed SNP genotyping	Higasa, K. and Hayashi, K., (2002) Nucleic Acids Res. 30, e11.
Mutagenesis	Tabuchi, M., Tanaka, N., Nishida-Kitayama, H., Ohno, H., and Kishi, F. (2002) Mol. Biol. Cell 13, 4371–5387.
	Matsumoto, N., Mitsuki, M., Tajima, K., Yokoyama, W. M., and Yamamoto, K. (2001) J. Exp. Med. 193, 147–158.
PCR for PCR-Mass spectrometry based analysis	Benson, L. M., Null, A. P., and Muddiman, D. C. (2003) J. Am. Soc. Mass. Spectrom. 14, 601–604.
PCR for sequence analysis	Okamoto, T., Yoshiyama, H., Nakazawa, T., Park, I. D., Chang, M. W., Yanai, H., Okita, K., and Shirai, M. (2002) J. Antimicrob. Chemother. 50, 849–856.
Second strand cDNA synthesis	Hirohashi, Y., Torigoe, T., Maeda, A., Nabeta, Y., Kamiguchi, K., Sato, T., Yoda, J., Ikeda, H., Hirata, K., Yamanaka, N., and Sato, N. (2002) Clin. Cancer Res. 8, 1731–1739.

(IV) KOD XL DNA Polymerase

- 1. Nishioka, M., Mizuguchi, H., Fujiwara, S., Komatsubara, S., Kitabayashi, M., Uemura, H., Takagi, M. and Imanaka, T. (2001) J. Biotechnol. 88, 141–149.
- 2. Sawai, H., Ozaki, A., Satoh, F., Ohbayashi, T., Masud, M. and Ozaki, H. (2001) Chem. Commun., 2604-2605.
- 3. Sawai, H., Ozaki-Nakamura, A., Mine, M. and Ozaki, H. (2002) Bioconjug. Chem. 13, 309-316.
- 4. Breslauer, K. J., Frank, R., Blocker, H. and Marky, L. A. (1986) Proc. Natl. Acad. Sci. 83, 3746-3750.
- 5. Howley, P. M., Israel, M. A., Law, M. F. and Martin, M. A. (1979) J. Biol. Chem. 254, 4876-4883.
- 6. Cheng, S., Fockler, C., Barnes, W. M. and Higuchi, R. (1994) Proc. Natl. Acad. Sci. USA 91, 5695–5699.
- 7. Winship, P. R. (1989) Nucleic Acids Res. 17, 1266.

Application	Reference	
Construction of combinatorial protein libraries by random multi-recombinant PCR	Tsuji, T., Onimaru, M. and Yanagawa, H. (2001) Nucleic Acids Res. 29, E97	
Gene cloning	Kim, T. S., Maeda, A., Maeda, T., Heinlein, C., Kedishvili, N., Palczewski, K., and Nelson, P. S. (2005) <i>J. Biol. Chem.</i> 280, 8964–8704.	
	Ogawara, Y., Kishishita, S., Obata, T., Isazawa, Y., Suzuki, T., Tanaka, K., Masuyama, N. and Gotoh, Y. (2002) <i>J. Biol. Chem.</i> 277, 21843–21850.	
Genotyping, crude genomic DNA preparation from clinical samples	Mitsumori, K., Onodera, H., Shimo T., Yasuhara, K., Takagi, H., Koujitani, T., Hirose, M., Maruyama, C., and Wakana S. (2000) <i>Carcinogenesis</i> 21, 1039–1042.	
	Sasagawa, T., Basha, W., Yamazaki, H. and Inoue, M. (2001) <i>Cancer Epidemiol. Biomarkers Prev.</i> 10, 45–52.	
Incorporation of derivatized dNTPs	Sawai, H., Ozaki-Nakamura, A., Mine, M., and Ozaki, H. (2002) Bioconjug. Chem. 13, 309–319.	
	Sawai, H., Ozaki, A., Satoh, F., Ohbayashi, T., Masud, M., and Ozaki, H. (2001) <i>Chem. Commun.</i> , 2604–2605.	
Multiplex colony-direct PCR	Okitsu, T., Suzuki, R., and Yamai, H. (2001) inNovations 17, 11.	
Second strand cDNA synthesis	Tabuchi, I., Soramoto, S., Suzuki, M., Nishigaki, K., Nemoto, N., and Husimi, Y. (2002) Biol. Proced. Online 4, 49–54.	
	Tanaka T., Isono, T., Yoshiki, T., Yuasa, T., and Okada, Y. (2000) Cancer Res. 60, 56–59.	
Synthetic gene synthesis	Wu, G., Wolf, J. B., Ibrahim, A. F., Vadasz, S., Gunasinghe, M., and Freeland, S. (2006) J. Biotechnol. 124, 496–503.	

(V) KOD DNA Polymerase

- 1. Nishioka, M., Mizuguchi, H., Fujiwara, S., Komatsubara, S., Kitabayashi, M., Uemura, H., Takagi, M. and Imanaka, T. (2001) *J. Biotechnol.* 88, 141–149.
- 2. Takagi, M., Nishioka, M., Kakihara, H., Kitabayashi, M., Inoue, H., Kawakami, B., Oka, M. and Imanaka, T. (1997) Applied and Environmental Microbiology 63, 4504–4510.
- 3. Cheng, S., Fockler, C., Barnes, W. M. and Higuchi, R. (1994) Proc. Natl. Acad. Sci. USA 91, 5695–5699.
- 4. Winship, P. R. (1989) Nucleic Acids Res. 17, 1266.
- 5. Breslauer, K. J., Frank, R., Blocker, H. and Marky, L. A. (1986) *Proc. Natl. Acad. Sci.* 83, 3746–3750.
- 6. Howley, P. M., Israel, M. A., Law, M. F. and Martin, M. A. (1979) J. Biol. Chem. 254, 4876–4883.

Application	Reference
Construction of knock-out targeting vector	Kim, T. S., Maeda, A., Maeda, T., Heinlein, C., Kedishvili, N., Palczewski, K., and Nelson, P. S. (2005) J. Biol. Chem. 280, 8964–8704.
Gene cloning	Herrin, B. R., Groger, A. L., and Justement, L. B. (2005) <i>J. Biol. Chem.</i> 280, 3507–3515.
	Ikehara, Y., Ikehara, S. K., and Paulson, J. C. (2004) J. Biol. Chem. 279, 43117–43125.
	Momose, F., Basler, C. F., O'Neill, R. E., Iwamatsu, A., Palese, P., and Nagata, K. (2001) J. Virol. 75,1899–1908.
	Matsuura, A., Kinebuchi, M., Chen, H., Katabami, S., Shimizu, T., Hashimoto, Y., Kikuchi, K., and Sato, N. (2000) <i>J. Immunol.</i> 164, 3140–3148.
	Kitagawa, M., Hatakeyama, S., Shirane, M., Matsumoto, M., Ishida, N., Hattori, K., Nakamichi, I., Kikuchi, A., Nakayama, K., and Nakayama, K. (1999) <i>EMBO J.</i> 18, 2401–2410.
	Nakashima, N., Noguchi, E., and Nishimoto T. (1999) Genetics 152, 853–867.
Genomic DNA cloning	Nisole, S., Lynch, C., Stoye, J. P., and Yap, M. W. (2004) <i>Proc. Natl. Acad. Sci.</i> USA. 101, 13324–13328
Second strand cDNA synthesis	Sasaki, Y., Casola, S., Kutok, J. L., Rajewsky, K., and Schmidt-Supprian, M. (2004) <i>J. Immunol.</i> 173, 2245–2252.
	Yazaki, K., Shitan, N., Takamatsu, H., Ueda, K., and, Sato, F. (2001) <i>J. Exp. Bot.</i> 52, 877–879.
Synthetic gene synthesis	Wu, G., Wolf, J. B., Ibrahim, A. F., Vadasz, S., Gunasinghe, M., and Freeland, S. (2006) <i>J. Biotechnol.</i> 124, 496–503.

To Place an Order or Receive Technical Assistance

In Europe, please call Customer Service:

France: 0825 045 645 Germany: 01805 045 645

Italy: 848 845 645

Spain: 901 516 645 Option 1 Switzerland: 0848 645 645 United Kingdom: 0870 900 4645 For other countries across Europe, please call: +44 (0) 115 943 0840

Or visit: www.merckmillipore.com/offices

For Technical Service visit:

www.merckmillipore.com/techservice

Get Connected!

Join Merck Millipore Bioscience on your favorite social media outlet for the latest updates, news, products, innovations, and contests!

facebook.com/Merck Millipore Bioscience

twitter.com/Merck4Bio

www.merckmillipore.com

Xtreme, NovaTaq, Perfect DNA, CytoBuster, Merck Millipore and the M mark are trademarks and T7Select and Novagen are registered trademarks of Merck KGaA, Darmstadt, Germany. All trademarks belonging to third parties are the property of their respective owners. Lit No. PR3366ENEU LS-SBU-12-05962 3/2012 © 2012 EMD Millipore Corporation, Billerica, MA USA. All rights reserved.